Spelling suggestions: "subject:"high harmonic generation"" "subject:"igh harmonic generation""
41 |
Imagerie nanométrique ultra-rapide par diffraction cohérente de rayonnement XUV produit par génération d'harmoniques d'ordre élevés / Ultrafast Nanoscale Imaging Using Coherent Diffraction of XUV Produced HHGCassin, Rémy 21 December 2017 (has links)
L'objectif de ce mémoire est dedévelopper de nouvelles méthodes d'imageriesans lentille en simple tir 2D et 3D avec dessources harmoniques XUV. Un intérêt particulierest porté aux techniques d'imageries permettantl'imagerie des objets biologiques et de phase.Dans un premier temps, on introduit la théorie del'imagerie dans lentille et on détaille lesméthodes utilisées au cours de cette thèse pourreconstruire le champ diffracté par l'objet quel'on souhaite imager. Les techniques d'imageriessont séparées en deux catégories : itératifs etholographiques. On discute des conditionsexpérimentales nécessaires à la reconstruction del'image de l'objet et on compare les avantagesrespectifs des deux types de méthodes. Puis, ondétaille les aspects expérimentaux du faisceauXUV obtenu par HHG et on couvre brièvementla théorie associée à ce processus. La sectionsuivante traite des paramètres et des techniquesde traitement des données influant sur la qualitéde l'image reconstruite en imagerie sans lentille.On montre comment améliorer lesreconstructions HERALDO dans un régime defaible flux de photons. On présente ensuite lesrésultats d'une technique de caractérisationcomplète de la cohérence spatiale d’un faisceauXUV en simple tir. Cette dernière est unparamètre critique de l'imagerie sans lentille. Al'aide d'un tableau non redondant de référencesponctuelles, on mesure la cohérence spatialepour chaque distance entre les références, sansaucune mesure du profil spatial du faisceau. Onmontre que la distribution de la cohérence estgaussienne et que son diamètre dépend desconditions de génération du faisceauharmonique. On étudie aussi quantitativementcomment l'accumulation de plusieurs tirs dediffraction diminue la cohérence apparente dufaisceau. Une expérience d'imagerie d'objets dephase avec une source harmonique pouvant êtreappliquée à des objets biologiques est ensuiteprésentée.A notre connaissance c'est la premièrereconstruction par méthode CDI d'objets dephase avec une source harmonique. La suite dumanuscrit présente les résultats de deuxexpériences visant à réaliser de l'imagerie 3D àl'échelle nanométrique avec une sourceharmonique. Tout d’abord, on présente unetechnique d'imagerie 3D simple tir. C'est lapremière expérience permettant unereconstruction 3D à partir d'une seuleacquisition, avec une résolution spatialenanométrique et une résolution temporellefemtoseconde, sans utiliser de connaissances apriori sur l'objet étudié. Cette technique possèdeun vaste spectre d'application, particulièrementpour l'étude structurelle d'échantillonsbiologiques sensibles aux dégâts d'irradiation.De plus, cette technique peut être facilementapplicable à des FELs et des synchrontrons pourobtenir de meilleures résolutions. La deuxièmeexpérience d'imagerie 3D est une preuve deconcept validant la faisabilité de lacryptomographie avec une source harmonique.Pour reconstruire le volume 3D de l'échantillon,la cryptotomographie utilise des figures dediffraction qui sont acquises pour desorientations de l'échantillon inconnues. Lerégime de faible flux dans lequel on se place nouspermet de simuler les paramètres d'une sourceharmonique fonctionnant dans la fenêtre de l'eau.On conclut que, le niveau du signal de diffractionest suffisant pour pouvoir identifier l'orientationde l'objet à partir des figures de diffractionenregistrées, dans des conditions expérimentalesoptimisées. Ainsi, avec suffisamment de figuresde diffraction enregistrées et assez d'orientationsde l'objet, on peut reconstruire le volume 3D del'objet. Ces résultats impliquent qu'uneexpérience de cryptotomographie d'objetsbiologiques avec une source harmoniquefonctionnant dans la fenêtre de l'eau seraitréalisable. / The aim of this dissertation is todevelop new lensless single shot imagingtechnique in 2D and 3D with XUV harmonicsources which can be applied to study biologicalobjects and phase objects. Firstly, we introducethe theory underlying lensless imagingtechniques and we describe the methods usedduring this thesis to reconstruct the light fielddiffracted by the studied object. The imagingtechniques are split in two categories: iterativeand holographic. The iterative methodsreconstruct the phase of the diffracted wavefront using constraints in the Fourier space andthe reel space. With the holographic techniques,the phase is encoded directly in the interferencefringes between the reference and the objectwithin the diffraction pattern. We discuss theexperimental parameters required to achieve animage reconstruction and we compare therespective advantages of the two types ofmethod. Then, we describe the experimentalparameters of the XUV beam produced by highharmonic generation (HHG) and we brieflyexplain the theory of the HHG. The next sectiondiscusses the parameters the quality of thereconstructed image. We show how to improvethe resolution and the signal to noise ratio usingthe HERALDO technique in the low fluxregime.We then show the result of a new technique forthe single shot characterization of the spatialcoherence of XUV beams. Indeed, the spatialcoherence is a critical parameter for coherentdiffractive imaging techniques. Using a NRA ofreference holes, we measure the spatialcoherence for each distance between each pairof holes, without the knowledge of the intensitydistribution on the sample. We show that thespatial coherence has a gaussian distribution andthat its diameter varies according to thegeneration parameters of the harmonic beam.We also study quantitatively the effect of multishotsaccumulation of the diffraction pattern onthe apparent coherence of the beam. We alsoshow the result of phase object imaging usingcoherent diffractive imaging with a harmonicsource. To our knowledge, this if the first timesuch result has been achieved. The rest of thedissertation present new lensless imaging 3Dtechniques using harmonic sources. The first ofthe last two experiments shown is a lenslesssingle shot stereo 3D technique. It is the first oneallowing a 3D reconstruction from a singleacquisition, with a nanometer spatial resolutionand a femtosecond temporal resolution, withoutusing \textit{a priori} knowledge of the samplestudied. This method has a vast spectrum ofapplication and is particularly interesting for thestructural study of biological sample sensitive toradiation damage and for the study of nonreversibledynamical phenomena in 3D.Furthermore, this can easily be implemented inFELs and synchrotrons to reach even betterspatial resolution. The second 3D experimentshown in this thesis is a proof of concept ofcryptotomography using a high harmonic sourcein a low flux regime. To reconstruct the 3Dvolume of the sample, cryptotomographie usesdiffraction pattern acquired for unknown sampleorientations and therefore non-classified. Thelow flux regime used here simulate the flux of aharmonic source generated in the water window.We conclude from this experiment that, with theproper experimental conditions, the diffractionsignal is sufficient to allow the classification byorientation of the diffraction patterns. Withenough diffraction pattern and angles of thesample recorded, we can achieve a 3Dreconstruction of the sample. This result impliesthat the cryptotomography of biological objectsusing a water window harmonic source ispossible.
|
42 |
Broadband Coherent X-ray Diffractive Imaging and Developments towards a High Repetition Rate mid-IR Driven keV High Harmonic Source / Imagerie par diffraction cohérente des rayons X en large bande spectrale et développements vers une source harmonique au keV pompée par laser moyen-infrarouge à haut taux de répétitionHuijts, Julius 20 June 2019 (has links)
Des sources des rayons XUV (1-100 nm) sont des outils extraordinaires pour sonder la dynamique à l’échelle nanométrique avec une résolution femto- voire attoseconde. La génération d’harmoniques d’ordre élevé (GH) est une des sources majeures dans ce domaine d’application. La GH est un processus dans lequel une impulsion laser infrarouge femtoseconde est convertie, de manière cohérente, en fréquences élevées dans le domaine EUV par interaction hautement non-linéaire dans un atome, une molécule et plus récemment, dans un cristal. La GH possède une excellente cohérence spatiale qui a permis de réaliser des démonstrations impressionnantes en imagerie sans lentille. Pour accroître le potentiel de ces sources, des défis sont à relever : leur brillance et énergie de photon maximum doivent augmenter et les techniques d’imagerie sans lentille doivent être modifiées pour être compatibles avec l’importante largeur spectrale des impulsions attosecondes émise par ces sources. Cette thèse présente une nouvelle approche dans laquelle des figures de diffraction large bande, i.e. potentiellement attosecondes, sont rendues monochromatiques numériquement. Cette méthode est basée uniquement sur la mesure du spectre de la source et la supposition d’un échantillon spatialement non-dispersif. Cette approche a été validée tout d’abord dans le visible, à partir d’un supercontinuum. L’échantillon binaire est reconstruit par recouvrement de phase pour une largeur spectrale de 11 %, là où les algorithmes usuels divergent. Les simulations numériques montrent aussi que la méthode de monochromatisation peut être appliquée au domaine des rayons X, avec comme exemple un masque semi-conducteur utilisé en de lithographie EUV. Bien que la brillance « cohérente » de la source actuelle (qui progresse) reste insuffisante, une application sur l’inspection de masques sur source Compton est proposée. Dans une extension de ces simulations un masque de lithographie étendu est reconstruit par ptychographie, démontrant la versatilité à d’autres techniques d’imagerie sans lentille. Nous avons également entamé une série d’expérience dans le domaine des X-durs sur source synchrotron. Les figures de diffraction après monochromatisation numérique semblent prometteuses mais l’analyse des données demandent des efforts supplémentaires. Une partie importante de cette thèse est dédiée à l’extension des sources harmoniques à des brillances et énergies de photon plus élevées. Ce travail exploratoire permettrait la réalisation d’une source harmonique compacte pompée par un laser OPCPA dans le moyen infrarouge à très fort taux de répétition. Les longueurs d’onde moyen infrarouge (3.1 μm dans ce travail de thèse) sont favorables à l’extension des énergies des photons au keV et aux impulsions attosecondes. Le but est de pouvoir couvrir les seuils d’absorption X et d’améliorer la résolution spatio-temporelle. Cependant, deux facteurs rendent cette démonstration difficile: le nombre de photons par impulsion de la source OPCPA est très limité et la réponse du dipôle harmonique à grande longueur est extrêmement faible. Pour relever ces défis plusieurs configurations expérimentales sont explorées : génération dans un jet de gaz ; génération dans une cellule de gaz ; compression solitonique et la génération d’harmoniques combinées dans une fibre à cristal photonique ; compression solitonique dans une fibre à cristal photonique et génération d’harmoniques dans une cellule de gaz. Les premiers résultats expérimentaux sur la compression solitonique jusqu’à 26 femtosecondes et des harmoniques basses jusqu’à l’ordre sept sont présentésEn résumé, ces résultats représentent une avancée vers l’imagerie nanométrique attoseconde sans lentille basée sur des algorithmes « large bande » innovants et une extension des capacités de nouvelles sources harmoniques ‘table-top’ au keV pompées par laser OPCPA. / Soft X-ray sources based on high harmonic generation are up to now unique tools to probe dynamics in matter on femto- to attosecond timescales. High harmonic generation is a process in which an intense femtosecond laser pulse is frequency upconverted to the UV and soft X-ray region through a highly nonlinear interaction in a gas. Thanks to their excellent spatial coherence, they can be used for lensless imaging, which has already led to impressive results. To use these sources to the fullest of their potential, a number of challenges needs to be met: their brightness and maximum photon energy need to be increased and the lensless imaging techniques need to be modified to cope with the large bandwidth of these sources. For the latter, a novel approach is presented, in which broadband diffraction patterns are rendered monochromatic through a numerical treatment based solely on the spectrum and the assumption of a spatially non-dispersive sample. This approach is validated through a broadband lensless imaging experiment on a supercontinuum source in the visible, in which a binary sample was properly reconstructed through phase retrieval for a source bandwidth of 11 %. Through simulations, the numerical monochromatization method is shown to work for hard X-rays as well, with a simplified semiconductor lithography mask as sample. A potential application of lithography mask inspection on an inverse Compton scattering source is proposed, although the conclusion of the analysis is that the current source lacks brightness for the proposal to be realistic. Simulations with sufficient brightness show that the sample is well reconstructed up to 10 % spectral bandwidth at 8 keV. In an extension of these simulations, an extended lithography mask sample is reconstructed through ptychography, showing that the monochromatization method can be applied in combination with different lensless imaging techniques. Through two synchrotron experiments an experimental validation with hard X-rays was attempted, of which the resulting diffraction patterns after numerical monochromatization look promising. The phase retrieval process and data treatment however require additional efforts.An important part of the thesis is dedicated to the extension of high harmonic sources to higher photon energies and increased brightness. This exploratory work is performed towards the realization of a compact high harmonic source on a high repetition rate mid-IR OPCPA laser system, which sustains higher average power and longer wavelengths compared to ubiquitous Ti:Sapphire laser systems. High repetition rates are desirable for numerous applications involving the study of rare events. The use of mid-IR wavelengths (3.1 μm in this work) promises extension of the generated photon energies to the kilo-electronvolt level, allowing shorter pulses, covering more X-ray absorption edges and improving the attainable spatial resolution for imaging. However, high repetition rates come with low pulse energies, which constrains the generation process. The generation with longer wavelengths is challenging due to the significantly lower dipole response of the gas. To cope with these challenges a number of experimental configurations is explored theoretically and experimentally: free-focusing in a gas-jet; free-focusing in a gas cell; soliton compression and high harmonic generation combined in a photonic crystal fiber; separated soliton compression in a photonic crystal fiber and high harmonic generation in a gas cell. First results on soliton compression down to 26 fs and lower harmonics up to the seventh order are presented.Together, these results represent a step towards ultrafast lensless X-ray imaging on table-top sources and towards an extension of the capabilities of these sources.
|
43 |
High Harmonic Generation in a Kronig-Penney Model SolidThorpe, Adam 16 December 2020 (has links)
In 2010 high harmonic generation (HHG) in solids was first observed where high order harmonics of a strong laser field's frequency were observed. HHG in solids is now a rapidly developing field that allows for exciting applications like fully solid state attosecond XUV sources and new ultrafast resolution imaging techniques for quantum dynamics in solids.
HHG in solids has been explained by two mechanisms: an interband mechanism, due to polarization associated with separate energy bands, and an intraband mechanism that results from nonlinearities and population changes associated with each individual band. While interband HHG has been seen in wide bandwidth semiconductors, intraband HHG has been observed in narrow bandwidth dielectrics. There has not yet been an explanation of the alternation of mechanisms with material differences. The main goal of this thesis is to attempt to provide a better understanding of the most important mechanisms and where they prevail. Although numerical modelling of HHG requires consideration of multiple energy bands, a two-band model consisting only of a valence band and a single conduction band can explain the most important mechanisms. This model requires a given material's band gap between its valence and conduction bands as well as dipole matrix elements between the bands. In this thesis we follow the Kronig-Penney model to develop a 1D delta-function potential model of solids to obtain these properties required of the two-band model. We implement this in a Wannier quasi-classical (WQC) model of interband HHG in semiconductors that explains the dominant dynamics leading to such through quasi-classical real space electron-hole pair trajectories. Although HHG in solids can be explained to be the result of a resonant process in which an electron-hole pair is generated in the first step, there are also virtual transition processes that lack consideration. These processes do not conserve energy and correspond to transitions to conduction bands resulting from field induced distortions of the ground state. We use methodology introduced by Keldysh for optical field ionization of atoms and solids along with the 1D delta-function potential model to quantify how both resonant and virtual transitions lead to HHG in solids for wide and low bandwidth solids.
|
44 |
Attosecond Probing of Electron Dynamics in Atoms and Molecules using Tunable Mid-Infrared DriversGorman, Timothy Thomas January 2018 (has links)
No description available.
|
45 |
Driving strong-field dynamics with tailored laser pulsesBengs, Ulrich 15 May 2023 (has links)
Durch fortschreitende Entwicklung im Bereich der Starkfeldphysik und der Lasertechnologie in den letzten Jahrzehnten kann die Dynamik von Elektronen induziert durch Laserpulse verschiedener Wellenlängen, komplexen Polarisationseigenschaften, ultrakurzer Dauer und großer Intensität in hohem Umfang kontrolliert und ausgenutzt werden. In dieser Arbeit werden maßgeschneiderte Laserpulse angewendet, um verschiedene Aspekte der atomaren Licht-Materie-Wechselwirkung im Starkfeldbereich zu untersuchen.
Im ersten Teil der Arbeit wird insbesondere die Erzeugung von hohen Harmonischen erforscht, die durch zirkular polarisierte Laserfelder erzeugt werden, wobei das maßgeschneiderte Feld aus einem zirkular polarisierten Infrarotpuls und seiner zweiten Harmonischen mit entgegengesetzter zirkularer Polarisation besteht.
Die Polarisation von zirkularen hohen Harmonischen wird mittels spektral aufgelöster Polarimetrie unter Verwendung eines selbst entwickelten Polarimeters gemessen und ein Verfahren vorgestellt, mit dem der Stokes-Vektor der hoch zirkular polarisierten Harmonischen vollständig rekonstruiert werden kann.
Darüber hinaus wird zum ersten Mal gezeigt, dass das bizirkulare Schema auch auf erzeugende Laserpulse weniger Zyklen erweiterbar ist.
Der zweite Teil der Arbeit konzentriert sich auf die Starkfeldanregung eines Atoms durch einen intensiven Laserpuls. Da die ponderomotorische Verschiebung eines ausreichend intensiven Laserpulses eine resonante Anregung eines durch den Stark-Effekt verschobenen Atomzustands sowohl an der Vorder- als auch an der Rückflanke des Pulses bewirkt, diktiert die fundamentale Quantenmechanik, dass die an diesen Instanzen angeregten Elektronenwellenpakete interferieren müssen. Durch Variation der Verzögerung zwischen den Instanzen kann ein Interferenzmuster beobachtet werden, das als Stückelberg-Oszillationen bekannt ist und wertvolle Informationen über die Ionisierungsrate stark angeregter atomarer Zustände enthält. / As our fundamental understanding of strong-field physics and laser technology have matured in the last few decades, we are able to control and exploit electron dynamics using laser pulses of multiple colors, complex polarization properties, ultrashort duration and high intensity. This thesis makes use of such tailored laser fields to study different aspects of atomic light-matter interaction within the strong-field regime.
Particularly, the first part of the thesis explores high-harmonic generation driven by circularly polarized driving fields, where the tailored field is composed of a circularly polarized infrared pulse and its second harmonic with opposite circular polarization, often denoted as 'bicircular' driving field.
We measure the polarization of bicircularly generated harmonics by means of spectrally resolved polarimetry using a self-developed polarimeter and present a scheme, which allows to fully reconstruct the Stokes vector of the highly circularly polarized harmonics.
We further demonstrate for the first time, that the bicircular scheme is also applicable within the regime of few-cycle driving pulses. Applying driving fields containing only a few carrier oscillations, we present the generation of a broadband harmonic spectrum with highly elliptically polarized spectral content, supporting the generation of an isolated attosecond pulse.
The second part of the thesis focuses on strong-field excitation of an atom by an intense laser pulse. When the ponderomotive shift of a sufficiently intense laser pulse induces resonant excitation of a Stark-shifted atomic state at both the leading and trailing edge of the pulse, fundamental quantum mechanics dictates that the electron wave packets excited at these instances must interfere. By varying the delay between the instances, we observe the interference pattern known as Stückelberg oscillations which holds valuable information about the ionization rate of strongly driven atomic states.
|
46 |
Attosecond Pulse Generation and CharacterizationChirla, Razvan Cristian 19 October 2011 (has links)
No description available.
|
47 |
Ultrafast spectroscopy and control of quantum dynamics in tailored multicolor laser fieldsMayer, Nicola 17 April 2024 (has links)
In den letzten Jahrzehnten haben Tischlaserquellen eine bemerkenswerte Entwicklung durchlaufen. Sie sind nun in der Lage, maßgeschneiderte ultrakurze Mehrfarben-Laserpulse zu erzeugen, die es ermöglichen, die elektronische Dynamik in Materialien auf ihrer natürlichen Zeitskala von Attosekunden zu untersuchen. In dieser Arbeit werden verschiedene Kombinationen von elektrischen Feldern genutzt, von extrem-ultravioletten (XUV) bis nahinfraroten Wellenlängen, um komplexe Elektronendynamiken in Atomen und chiralen Medien zu erforschen, zu rekonstruieren und zu kontrollieren. Dabei werden grundlegende Konzepte der Licht-Materie-Wechselwirkung eingeführt, einschließlich starker Feldprozesse, die im Kern der Attosekundenspektroskopie liegen. Ein Schwerpunkt liegt auf der Nutzung eines XUV-Pulses in Kombination mit einem nahinfraroten Puls, um den Bevölkerungstransfer zu hohen Drehimpulszuständen in Heliumatomen zu untersuchen. Durch Manipulation der Laserparameter wird die Rolle des AC Stark-Effekts von gebundenen Zuständen in der beobachteten Dynamik identifiziert. Weitere Untersuchungen umfassen die Verwendung eines bicirculären elektrischen Feldes zur Induktion von HHG in Argon, wobei Anzeichen einer starken Feldfangung von Elektronen in angeregten Zuständen im HHG-Spektrum entdeckt werden. Die Arbeit zeigt die entscheidende Rolle angeregter Zustände in der HHG auf. Zusätzlich wird die Anwendung synthetischer chiraler Felder erforscht, um Chiralität auf achirale Objekte wie Atome zu übertragen, und es wird eine Verbindung zwischen synthetischen chiralen Feldern und strukturiertem Licht hergestellt. / In recent decades table-top laser sources have undergone remarkable development and are now capable of generating tailored ultrashort multicolor laser pulses, enabling the study of electronic dynamics in materials on their natural timescale of the attoseconds. In this thesis work various combinations of electric fields spanning from extreme-ultraviolet (XUV) to near-infrared wavelengths are used to investigate, reconstruct and control complex electron dynamics in atoms and chiral media. The initial chapter of this thesis introduces the fundamental concepts underlying light-matter interaction, including strong field processes which lie at the core of attosecond spectroscopy. The second chapter focuses on the utilization of an XUV pulse combined with a near-infrared pulse to study population transfer to high angular momentum states in helium atoms. By manipulating laser parameters, the study identifies the significant role played by the AC Stark shift of bound states in the observed dynamics. In the third chapter a bicircular electric field is employed to induce HHG in argon. Changing the timedelay between the two frequencies, indications of strong field trapping of electrons in excited states are uncovered within the HHG spectrum, confirming the existence of long-lived trajectories lasting multiple optical cycles. The study conclusively demonstrates the crucial role of excited states in HHG. The fourth chapter explores the application of synthetic chiral fields—whose polarization traces a chiral curve over the optical cycle—to imprint chirality on achiral objects such as atoms, both in the low- and strong-field regime. Moreover, the thesis establishes a connection between synthetic chiral fields and structured light, introducing chiral vortex beams with azimuthally varying handedness.
|
48 |
Probing Electron Correlations with First-principles Calculations of the High Harmonic Spectrum in SolidsAlam, Didarul 01 January 2023 (has links) (PDF)
High harmonic generation (HHG) is an extreme non-linear phenomenon where strong laser fields interact with a medium to produce coherent and high-frequency harmonics of the incident light. It has emerged as a rapidly growing research area in bulk materials since its first observation in ZnO crystals in 2011. Over the past decade, pioneering studies have already been made in understanding the details of the microscopic mechanism behind this phenomenon, like the role of intra- and inter-band transitions, the contribution of the modulus and the phase of the dipole moment to even and odd harmonic peaks, the role of the oscillating dipoles, effects of broken symmetry, etc. However, the role of electron-electron correlations in the HHG from strongly correlated materials is much less understood. In these materials the interactions between electrons play a significant role, leading to complex and intriguing physical behaviors. In this dissertation, on the example of ZnO, perovskites BaTiO3 and BiFeO3, and transition-metal oxide VO2 I will study the role of electron-electron interaction effects in the HH spectra by using the time-dependent density-functional theory (TDDFT) approach with the exchange-correlation kernel obtained with dynamical mean- field theory (DMFT). In DMFT, one takes into account time-resolved on-site electron-electron interactions (neglected in most of other approaches) that are crucial for a larger part of strongly correlated materials. As I demonstrate, correlation effects significantly modify the HH spectrum, e.g., through the ultrafast modification of the spectrum of the system, as it was found for ZnO. As the next step, I explored the effects of electron-electron correlations in the HH spectrum of BaTiO3 perturbed by intense, few-cycle mid-infrared laser excitations. The correlation effects in this system lead to the emergence of "super-harmonics" - periodic enhancements and suppressions of specific harmonic orders that depend on the correlation strength. I extended my analysis to the case of BiFeO3, where in addition to correlation effects the effects of memory in HHG were analyzed. I have found that both correlation effects and memory lead to an extension of the harmonic cutoff. In my final part, I explored the effect of electron correlations on the HH spectrum of VO2 and compared my findings with the experiment. The obtained results may shed light on the often important role of electron correlations in the HH spectra of solids, providing valuable insights into ultrafast dynamics in complex materials, and contributing to advancements in nonlinear optics and strong-field physics, with the potential for novel photonic devices and imaging techniques in the attosecond and femtosecond regimes.
|
49 |
Geração de harmônicos de pulsos laser de femtossegundo pela técnica de conversão de frequência em capilares preenchidos com gases nobres / Harmonics generation of femtosecond laser pulses by the technique of frequency conversion in noble gas filled capillariesSiqueira, Jonathas de Paula 26 June 2012 (has links)
O propósito principal desta tese foi a implementação e estudo da geração de pulsos laser de femtossegundos em comprimentos de onda curtos (ultravioleta profundo, ultravioleta de vácuo e ultravioleta extremo) pela técnica de conversão de frequência em capilar preenchido com gás nobre. Esta técnica de conversão de frequência tem feito diversas contribuições nas últimas décadas para o avanço da geração de pulsos laser ultracurtos nesta região espectral. O desenvolvimento de tais fontes de luz coerente possui importantes implicações nos estudos de espectroscopia resolvida no tempo em átomos, moléculas e materiais. Através da implementação da técnica de conversão de frequência com casamento de fase em capilar preenchido com gás argônio, foi possível a obtenção de pulsos de femtossegundos centrados em 260 nm e 195 nm utilizando um sistema laser amplificado Ti: safira (780 nm, 1.5 mJ, 43 fs, 1 KHz). Estes comprimentos de onda correspondem, respectivamente, aos terceiro e quarto harmônicos da frequência fundamental do laser utilizado. Pulsos centrados em 260 nm com excelente perfil espacial, energias da ordem de microjoules e durações temporais tão curtas quanto 18 fs, possibilitadas pela recompressão por um par de prismas, foram obtidos, os quais possuem grande aplicabilidade em estudos de espectroscopia não linear e resolvida no tempo. Pulsos ultracurtos centrados em 195 nm também foram obtidos. Uma investigação da influência da modulação da fase espectral do pulso laser em 780 nm sobre a geração de harmônicos através do processo do mistura de quatro ondas, também foi realizada. Desta forma, foi implementado um sistema de controle de formato de pulso laser de femtossegundo na configuração 4f baseado em um modulador espacial de luz de cristal líquido com o objetivo de modular a fase espectral dos pulsos laser em 780 nm. Este sistema de controle de formato de pulso foi então integrado ao sistema de geração de pulsos ultracurtos no ultravioleta profundo através do processo de mistura de ondas já implementado. Este estudo teve como objetivo, a obtenção da modulação indireta da fase espectral de pulsos em 260 nm através da transferência de fase espectral modulada de pulsos em 780 nm. Resultados iniciais interessantes foram obtidos utilizando uma fase espectral do tipo degrau com amplitude radianos, indicando a correta implementação do sistema. A obtenção de pulsos laser de femtossegundos no ultravioleta profundo com fase espectral modulada é de grande interesse para realização de experimentos de controle coerente nesta região espectral e também para estudos básicos de como a transferência de fase espectral ocorre para diferentes processos ópticos não lineares. Experimentos de geração de altos harmônicos pela técnica de conversão de frequência com casamento de fase em capilar preenchido com gás nobre, utilizando pulsos laser de femtossegundos em 400nm e 800nm, foram realizados durante estágio na Universidade do Colorado, EUA. Neste estudo, utilizando pulsos em 400nm, foi obtido um aumento maior que uma ordem de grandeza na região espectral em torno de 60eV em comparação com o fluxo de harmônicos gerados, nesta mesma região de energia, com pulsos centrados em 800nm. Por fim, através da experiência adquirida durante este estágio, foi desenvolvido e implementado em nosso laboratório um sistema de geração de altos harmônicos na região do ultravioleta extremo, baseado na técnica de conversão em capilar preenchido com gás argônio. Harmônicos de alta ordem na região de energia de 40ev (31nm) foram obtidos, tendo sido demonstrada a conversão sob condição de casamento de fase. Utilizando pulsos de femtossegundos em 780nm, a ordem máxima do harmônico observada foi igual a 27 (28.9nm, 42.9eV), devido a limitação da faixa espectral do monocromador utilizado em nossos experimentos. A implementação deste sistema torna disponível no Grupo de Fotônica, uma fonte de luz coerente no ultravioleta extremo, cujas propriedades únicas já tem sido amplamente exploradas em uma variedade de estudos de ciência básica e aplicada. / The main purpose of this thesis was the implementation and study of femtosecond laser pulses generation at short wavelengths (deep ultraviolet, vacuum ultraviolet end extreme ultraviolet) by the technique of frequency conversion in a hollow fiber filled with a noble gas. This frequency conversion technique has made several contributions in the last decades to improve the generation of ultrashort laser pulses in this spectral region. The development of such coherent light sources has important implications on ultrafast time-resolved spectroscopic study of atoms, molecules and materials. Through the implementation of the technique of phase matched frequency conversion in a gas filled hollow fiber using argon, it was possible to obtain femtosecond pulses centered at 260 nm and 195 nm using a Ti: sapphire amplified laser (780 nm, 1.5 mJ, 43 fs, 1 KHz). These wavelengths corresponds, respectively, to the third and fourth harmonics of the laser fundamental frequency. Pulses centered at 260 nm with excellent spatial profile, energies on the order of microjoules and temporal durations down to 18 fs, trough the compression by a prism pair, were obtained, which have wide applicability in nonlinear and time resolved optical spectroscopic studies. Ultrashort pulses at 195 nm where also obtained. An investigation of the influence of the spectral phase modulation of the laser pulses at 780 nm on the four-wave mixing nonlinear process for harmonic generation was also performed. In this way, a femtosecond pulse shaper based on a liquid crystal spatial light modulator in the 4f configuration was implemented in order to modulate the spectral phase of femtosecond pulses at 780 nm. This pulse shaper was then integrated to the system for generation of ultrashort pulses in the deep ultraviolet through the wave mixing process already implemented. This study aimed to obtain the indirect modulation of the 260 nm pulses spectral phase through the transfer of modulated spectral phase from pulses at 780 nm. Interesting initial results were obtained using a -step spectral phase, indicating the correct implementation of the system. The achievement of femtosecond pulses with modulated spectral phase in the deep ultraviolet is of great interest to perform coherent control studies in this spectral range and also for basic studies of how the spectral phase transfer occurs with different nonlinear optical laser processes. High-harmonic generation experiments based in the phase-matched frequency conversion in noble gas filled hollow fiber technique, using femtosecond pulses at 400 nm and 800 nm, were carried out during a internship at University of Colorado, USA. In this study, using pulses at 400 nm, an increase higher than one order of magnitude was obtained in the spectral region of 60 eV compared to harmonics generated, in this same region, with pulses at 800 nm. Finally, through the experience obtained during this internship, were carried out in our laboratory the development and implementation of a high harmonic generation system, based on the frequency conversion in a hollow fiber filled with argon gas. High harmonics with energies around 40eV (31nm) were obtained, and the conversion under phase-matched condition was demonstrated. Using pulses centered at 780nm, the highest harmonic order measured was 27 (28.9nm, 42.9eV), due to the spectral range limitation of monochromator used in our experiments. With the implementation of this system, becomes available at the Photonics Group a coherent light source at extreme ultraviolet wavelengths, which the unique properties have been already widely explored on a diversity of fundamental studies in basic and applied science.
|
50 |
Etudes structurelles et dynamiques de systèmes atomiques ou moléculaires par génération d'harmoniques d'ordre élevéHiguet, Julien 15 October 2010 (has links)
La génération d'harmoniques d'ordre élevé en milieu gazeux est un phénomène décrit par un modèle à trois étapes: sous l'effet d'un champ laser intense, un atome (ou une molécule) est ionisé par effet tunnel. L'électron éjecté est par la suite accéléré dans le champ laser, avant de se recombiner sur son ion parent en émettant un photon XUV. D'abord utilisée dans le but de développer des sources de rayonnement secondaire dans le domaine XUV, la génération d'harmoniques d'ordre élevé est également un bon candidat pour sonder la structure électronique des atomes ou des molécules, avec une résolution potentielle de l'ordre de l'attoseconde dans le domaine temporel (1 as=10-18 s) et sub-nanométrique dans le domaine spatial.Au cours des travaux réalisés pendant cette thèse, nous avons étudié la sensibilité des caractéristiques du rayonnement harmonique (amplitude, état de polarisation, phase) à la structure électronique du milieu de génération. Ces études ont été menées tout d'abord dans un milieu atomique couramment utilisé en génération d'harmonique, l'argon, puis dans des milieux moléculaires (N2, CO2, O2). La confrontation de ces mesures avec différentes simulations numériques montre la nécessité de modéliser de façon détaillée le processus de génération, dépassant certaines hypothèses généralement admises.Nous avons également montré la possibilité d'utiliser la spectroscopie d'harmoniques d'ordre élevé afin de mesurer des dynamiques moléculaires de systèmes complexes (notamment le dioxyde d'azote NO2), pour lesquelles les mesures harmoniques peuvent obtenir des résultats complémentaires aux autres techniques couramment utilisées. Dans le cas d'excitations moléculaires peu efficaces, nous avons pu adapter des techniques de spectroscopie optique conventionnelle au domaine spectral des harmoniques d'ordre élevé, améliorant de manière significative le rapport signal/bruit. / High harmonic generation is a well known phenomenon explained by a “three step” model: because of the high intensity field generated by an ultrashort laser pulse, an atom or a molecule can be tunnel ionized. The ejected electron is then accelerated by the intense electric field, and eventually can recombine on its parent ion, leading to the emission of a XUV photon. Because of the generating process in itself, this light source is a promising candidate to probe the electronic structure of atoms and molecules, with an attosecond/sub-nanometer potential resolution (1 as=10-18 s).In this work, we have studied the sensitivity of the emitted light (in terms of amplitude, but also phase and polarization) towards the electronic structure of the generating medium. We have first worked on atomic medium, then on molecules (N2, CO2, O2). Comparing the experimental results with numerical simulations shows the necessity to model finely the generation process and to go beyond commonly used approximations.We have also shown the possibility to perform high harmonic spectroscopy in order to measure dynamics of complex molecules, such as Nitrogen Dioxide (NO2). This technic has obtained complementary results compared to classical spectroscopy and has revealed dynamics of the electronic wavepacket along a conical intersection. In this experiment, we have adapted conventionnal optical spectroscopy technics to the XUV spectral area, which significantly improved the signal over noise ratio.
|
Page generated in 0.1534 seconds