• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extreme Ultraviolet Hyperspectral Coherent Diffractive Imaging

Yijian, Meng January 2015 (has links)
We demonstrate hyperspectral imaging using two time-delayed, coherent extreme ultraviolet (XUV) sources. The approach combines broadband XUV high-harmonic generation, holographic imaging, and Fourier transform spectroscopy. The two harmonics sources are spatially separated at generation,and overlap in the far field resulting in a double slit diffraction pattern. We record the two-dimensional intensity modulation as a function of relative time delay; the Fourier transform determines the spatially dependent spectrum. To reduce the delay jitter and improve the spectral resolution, we demonstrate a novel experimental setup that records the relative delay of the two pulses through optical interference. Moreover, we have demonstrated that this broadband approach can be extended to Fourier transform holographic imaging, which avoids extensive phase retrieval computations. Applications include imaging of biological materials near the carbon K-edge.
2

Direct Observation of Laser Filamentation in High-Order Harmonic Generation

Painter, John Charles 15 May 2006 (has links) (PDF)
We investigate the spatial evolution of an intense laser pulse as it generates high-order harmonics in a long gas cell, filled with 80 torr of helium. A thin foil separates the gas-filled region of the cell from a subsequent evacuated region. The exit plane of the gas cell can be scanned along the laser axis so that the evolution of the laser throughout the focus can be observed (full scanning range of 9 cm). We constructed an apparatus that images the laser radial energy profile as it exits the cell. The high harmonics, odd orders ranging from 45 to 91, are observed at the same time that the laser spot is characterized. Re-absorption of the harmonics within the gas cell restricts the region of harmonic emission to the final centimeter (or less) of the cell. We present the first direct evidence (to our knowledge) of laser filamentation under conditions ideal for high-order harmonic generation. The 30 fs, 4 mJ, laser pulses were observed to undergo double focusing within the gas cell, with about 4 cm separating the two foci. The region with best harmonic emission occurs midway between the two foci. The radial profile of the laser focus, 150-200 microns in diameter, evolves from a Gaussian-like profile to a more square-top profile as it propagates over several centimeters. The filamentation phenomenon as well as the brightness of the harmonics improves when an aperture is partially closed on the laser beam before reaching the focusing mirror. A spectral sampling of the imaged laser focus revealed a 4 nm blue-shift associated with the generation of plasma in the gas cell. The blue-shifting occurs primarily in the center of the laser beam and less at the wider radii. The initial laser pulse had a spectrum centered at 800 nm with a 35 nm bandwidth. The energy associated with each of the observed 26 harmonic beams was found to be approximately 1 nJ, yielding a conversion efficiency of approximately 2e−7.
3

Polarization Dependence of High Order Harmonic Generation from Solids in Reflection and Transmission Geometries

Crites, Erin L 01 January 2020 (has links)
High harmonic generation (HHG) is a process that occurs when an intense laser interacts with a material and generates new frequencies of light. HHG has many practical applications, namely as a spectroscopy technique and source for high frequency light and attosecond pulses. While HHG has been done extensively in gases, HHG in solids is a relatively new field. Solids are appealing as an HHG medium as they require much simpler equipment and are subsequently much more compact, and thus may have a variety of applications previously inaccessible to gas-phase HHG. However, the generation mechanism of HHG in solids has not been fully characterized yet, as the processes behind HHG in gases and solids are not synonymous. Here, we study the influence of polarization, symmetry, and setup geometry on HHG in solids. We study the propagation effects in a transmission geometry setup and use Jones calculus to counteract the polarization change from propagation. We compare these results to a reflection geometry setup, which naturally does not have propagation effects, to determine the validity of the polarization correction technique. We also look at the electric field symmetry dependence on HHG through the manipulation of the laser electric field with a two-color interferometer. The impact of symmetry dependence and propagation effects both contribute to a better understanding of the HHG process in solids.
4

Imagerie nanométrique ultra-rapide par diffraction cohérente de rayonnement extrême-UV produit par génération d'harmoniques d'ordre élevé / Ultrafast nanometers scale coherent diffractive imaging with extreme-UV light from high harmonics generation beamline

Gauthier, David 07 February 2012 (has links)
Ce manuscrit présente des expériences d’imagerie par diffraction réalisées en utilisant une source de rayonnement cohérent basée sur la génération d’harmoniques d’ordre élevé d’un laser Ti:Sa. Elles démontrent que cette source extrême-UV de laboratoire produit un nombre suffisant de photons par impulsion pour enregistrer une figure de diffraction d’objets tests en « simple tirs ». Le signal ainsi enregistré permet l’obtention d’une image de l’objet avec une résolution d’une centaine de nanomètres. Deux schémas sont utilisés pour reconstruire l’objet : le premier utilise un algorithme itératif de reconstruction de la phase perdue pendant la détection de la figure de diffraction ; le second utilise une configuration holographique par transformée de Fourier. Les travaux réalisés comportent deux parties. La première concerne l’optimisation de la source harmonique et inclut une étude expérimentale d’un dispositif de filtrage spatial du faisceau laser de génération par propagation dans une fibre creuse. La seconde partie présente les expériences d’imagerie par diffraction, et notamment une démonstration du schéma holographique HERALDO qui est une extension de l’holographie par transformée de Fourier à des références en forme de polygones. L’utilisation de ces références « étendues » a pour avantage d’optimiser l’enregistrement holographique tout en conservant une reconstruction directe et sans ambigüité de l’objet. Une analyse signal-sur-bruit ainsi qu’une comparaison des reconstructions d’hologramme pour différentes formes de références sont effectuées. / This manuscript presents diffraction imaging experiments performed using a source of coherent radiation based on high order harmonics generation of a Ti:Sa laser. They demonstrate that this laboratory size XUV source produces a number of photons per pulse sufficient to record the diffraction pattern of test objects in « single shot ». The signal thus recorded allows obtaining an image of the object with a resolution of around 100 nanometers. Two schemes are used to reconstruct the object: the first one uses an iterative algorithm to retrieve the phase lost during the detection of the diffraction pattern; the second uses a configuration of Fourier transform holography. The work presented here is separated in two parts. The first one concerns the optimization of the harmonic source, including an experimental study of a spatial filtering device for laser beams by propagation in a hollow core fiber. The second part deals with the diffraction imaging experiments. In particular, I present a demonstration of the holographic scheme HERALDO, which is an extension of the Fourier transform holography with polygonal references. The use of these « extended » references allows the optimization of the holographic recording while maintaining a direct and non-ambiguous reconstruction of the object. An analysis of signal-to-noise ratio and a comparison of hologram reconstructions for different types of references are performed.
5

Post compression d'impulsions intenses ultra-brèves et mise en forme spatiale pour la génération d'impulsions attosecondes intenses / Post compression of high energy ultra-short pulses and spatial shaping of intense laser beams for generation of intense attosecond pulses

Dubrouil, Antoine 28 October 2011 (has links)
La génération d'harmoniques d'ordre élevé en milieu gazeux est un phénomène habituellement décrit par un modèle à trois étapes : sous l'effet d'un champ laser intense, un atome (ou une molécule) est ionisé par effet tunnel. L'électron éjecté est accéléré dans le champ laser, puis il se recombine sur son ion parent en émettant un photon XUV. Ce rayonnement XUV, émis sous la forme d'impulsions attosecondes (1 as = 10-18 s), est un outil idéal pour sonder la structure électronique des atomes ou des molécules, avec une résolution temporelle de l'ordre de l'attoseconde. Néanmoins, l'intensité de ce rayonnement n'est en général pas suffisante pour induire des effets non-linéaires (transitions à deux photons).Au cours des travaux réalisés pendant cette thèse, nous avons développé une source harmonique capable de produire un rayonnement XUV intense qui doit permettre d'accéder à la physique non-linéaire dans cette gamme de longueur d'onde. Pour parvenir à ces résultats, un travail important sur les impulsions infrarouges génératrices a été nécessaire, aussi bien dans le domaine spatial que dans le domaine temporel. Une technique de mise en forme spatiale de faisceaux laser intenses a donc été développée, ainsi qu'une technique de post compression adaptée aux impulsions laser intenses. Ce travail de thèse se divise donc en trois étapes : - Le développement de la source harmonique haute énergie et des diagnostics associés. Cette source est basée sur l'utilisation d'une chaîne laser Titane-Saphir qui délivre des impulsions de 150 mJ pour des durées de 40 fs à une cadence de 10 Hz. De bonnes conditions d'optimisation ont été obtenues, donnant lieu à des impulsions XUV dont l'énergie est de l'ordre du µJ lors de la génération dans l'argon.- Le développement d'une technique de mise en forme spatiale adaptée aux faisceaux laser intenses et à la génération d'harmoniques. Le dispositif est basé sur une optique en réflexion et sur les interférences à deux faisceaux. Il permet de produire, dans la région focale, des faisceaux dont le profil d'intensité est radialement constant (faisceaux flat top) et ainsi d'apporter un contrôle supplémentaire sur la génération d'harmoniques d'ordre élevé.- Le développement d'une technique de post compression en propagation guidée basée sur l'élargissement spectral induit par ionisation. Cette technique est adaptée pour des impulsions intenses (3.5 TW) et permet de produire des impulsions de puissance crête supérieure au Térawatt dans le domaine sub-10 fs. Cette technique fournit donc une source unique pour la génération d'harmoniques d'ordre élevé.Ces deux approches ont été testées et validées pour la génération d'harmoniques d'ordre élevé, et les résultats obtenus ouvrent d'intéressantes perspectives telles que la génération d'impulsions attosecondes isolées de haute énergie (> 100 nJ). / The generation of high order harmonics in a gaseous medium is a phenomenon conveniently described by a three steps model : subject to a strong laser field irradiation, an atom (or molecule) can undergo a tunneling ionization. The ejected electron is accelerated in the laser field and recombine on its parent ion leading to the emission of an XUV photon. The XUV radiation can be emitted as attosecond pulses (1 as = 10-18 s), and it is then an ideal tool to probe the electronic structure of atoms or molecules which require the highest time resolution. However, the intensity of this radiation is usually not sufficient to induce non-linear processes (two-photon transitions).In the frame of this work, we have developed a harmonic source capable of producing an intense XUV radiation to access non-linear physics in this wavelength domain.To achieve these results, significant work on the infrared generating pulses was necessary, both in the spatial and temporal domain. We have developed a technique for spatial shaping of intense laser beams, and a post compression technique fitted to high energy pulses.This thesis is therefore divided into three parts:- The development of an high energy harmonic source and related diagnostics. We use a Ti: sapphire laser system for this source which delivers 40-fs pulses up to an energy of 150 mJ at 10 Hz repetition rate. Good optimization conditions were obtained, leading to XUV pulse energies of the order of μJ in the case of generation in argon.- The development of a spatial shaping technique adapted to intense laser beams and to harmonic generation. The device is based on reflection optics and the interferences of two beams. It can produce, in the focal region, beams with a radially constant intensity over a large volume (flat top beams) and thus provide additional control of the harmonics generating process.- The development of a post compression technique in guided geometry based on the ionization induced spectral broadening. This technique is suitable for intense pulses (3.5 TW) and produces pulses above the terawatt level in the 10-fs range. This technique therefore provides a unique source for harmonic generation.These two approaches have been tested and validated for high order harmonics generation, and the results open interesting perspectives such as the generation of isolated attosecond pulses of high energy (> 100 nJ).
6

Imagerie ultrarapide à l’échelle nanométrique par diffraction XUV cohérente / Ultrafast coherent XUV diffractive imaging at nanometer scale

Ge, Xunyou 11 December 2012 (has links)
Imager des objets non-périodiques à une échelle nanométrique et à une échelle femto seconde est un vrai challenge à notre époque. Les techniques d’imagerie « sans lentille » sont des moyens puissants pour répondre à ce besoin. En utilisant des sources ultrarapide (~fs) et cohérente (ex. laser à électron libre ou harmoniques d’ordres élevés), ces techniques nous permettent de reconstruire des objets à partir de leur figure de diffraction, remplaçant les optiques conventionnelles du système d’imagerie par un algorithme informatique. Dans ce travail de thèse, je présent des expériences d’imageries en utilisant un rayonnement extrême-UV (15~40 nm) produit par la génération d’harmoniques d’ordre élevé d’un laser infrarouge puissant. Ce manuscrit est constitué d’une introduction, un chapitre de background théorique, trois chapitres de travail de thèse et une conclusion générale avec perspectives. La première partie du travail de thèse porte sur les développements et caractérisations de la ligne de lumière avec l’objectif de générer maximum de photons harmoniques cohérents avec un front d’onde plat. La deuxième partie est consacrée aux expériences et analyses de trois techniques d’imageries « sans lentille » : Imagerie par diffraction cohérente (CDI), Holographie par la transformée de Fourier (FTH) et Holographie avec références étendues (HERALDO). Ces derniers nous permettent de reconstruire des objets avec une résolution spatiale de 78 nm dans le cas de CDI et de 112 nm dans le cas de HERALDO, tous les deux avec une résolution temporaire de 20 fs. La troisième partie est une première application physique de l’imagerie sur la ligne harmonique. Il s’agit des études statiques et dynamiques de nano-domaines magnétique avec une résolution spatiale sub-100 nm à l’échelle femto seconde. Perspective des techniques d’imagerie 3D et développement potentiel de la ligne d’harmoniques sont présentés à la fin. / Ultrafast imaging of isolated objects with nanometric spatial resolution is a great challenge in our time. The lensless imaging techniques have shown great potential to answer this challenge. In lensless imaging, one can reconstruct sample images from their diffraction patterns with computational algorithms, which replace the conventional lens systems. Using ultrafast and coherent light sources, such as free electron laser and high order harmonics, one can investigate dynamic phenomena at the femtosecond time scale. In this thesis work, I present the lenless imaging experiments using XUV radiation provided by a laser driven high order harmonic beamline. The manuscript is composed of an introduction, a chapter of theoretical background, three chapters of main research work and a general conclusion with perspectives. The first part of this work concerns the development of the harmonic beamline to optimize the illumination condition for lensless imaging. The second part concentrates on the imaging techniques: the Coherent Diffraction Imaging (CDI), the Fourier Transform Holography (FTH) and the Holography using extended references (HERALDO). The reconstructions have achieved 78 nm spatial resolution in case of CDI and 112 nm resolution in case of HERALDO, both in single-shot regime corresponding to a temporal resolution of 20 fs. The third part presents the first physical application on the harmonic beamline using the lensless imaging. Samples with magnetic nano-domains have been studied with sub-100 nm spatial resolution, which paves the way for ultrafast magnetic dynamic studies. At the end, single-shot 3D imaging and further beamline development have been discussed.

Page generated in 0.0855 seconds