Spelling suggestions: "subject:"high resolution,"" "subject:"igh resolution,""
221 |
A Hybrid Dynamically Adaptive, Super-Spatio Temporal Resolution Digital Particle Image Velocimetry for Multi-Phase FlowsAbiven, Claude 16 September 2002 (has links)
A unique, super spatio-temporal resolution Digital Particle Image Velocimetry (DPIV) system with capability of resolving velocities in a multi-phase flow field, using a very sophisticated novel Dynamically Adaptive Hybrid velocity evaluation algorithm has been developed The unique methodology of this powerful system is presented, its specific distinctions are enlightened, confirming its flexibility, and its superior performance is established by comparing it to the most established best DPIV software implementations currently available. Taking advantage of the most recent advances in imaging technology coupled with state of the art image processing tools, high-performing validation schemes including neural networks, as well as a hybrid digital particle tracking velocimeter (DPTV), the foundation for a unique system was developed. The presented software enables one to effectively resolve tremendously demanding flow-fields. The resolution of challenging test cases including high speed cavitating underwater projectiles as well as high pressure spray demonstrate the power of the developed device. / Master of Science
|
222 |
Ku-Band Ultra-High Resolution Radar Tomography of an Alpine SnowpackBartley, Ryan Natale 07 April 2020 (has links)
A commercial-off-the-shelf Ku-band Frequency Modulated Continuous Wave (FMCW) synthetic aperture radar (SAR) system is coupled with a custom built two-dimensional scanning system. This system is installed in an alpine environment and pointed at a snow-unstable mountain slope for the duration of a Utah winter. The radar scanning system, designed to be capable of mapping a snowpack and its layers, is employed to create a series of three-dimensional images from a remote location. Individual images demonstrate the ability to directly detect snow layers, Furthermore, successive images are compared to track volume magnitude and phase values over the course of winter, including many snow deposition and melt events. The digital signal processing techniques used to create a high-resolution voxel (a three-dimensional pixel) map describing these snow layers is discussed. Results are discussed and further work is suggested for improving upon the results of this work.
|
223 |
Investigating hyperglycemic bone formation with high resolution microscopy techniquesCreighton, Emily Rose January 2016 (has links)
Consensus in scientific literature is that hyperglycemia, which is a condition that manifests in individuals with uncontrolled diabetes, causes compromised bone growth, but the exact mechanisms of are unknown. It has been estimated that 5% of dental implant failures that have previously been linked to unknown causes may be associated with undiagnosed diabetes. It is important to study the early stages of bone growth as it is accepted that they are critical in the long-term success rate of endosseous implants. This study aimed to investigate the bone healing seen in the hyperglycemic group compared to the normal (i.e. control) group, at an early time point, using high-resolution microscopy techniques.
Ten young (200-250gram) male Wistar rats were used for this study with five rats assigned to the control group and the other five rats intravenously injected with 65 mg/kg of streptozotocin (STZ) to induce diabetes. An osteotomy model was used to make a 1.3mm defect in the diaphysis of the rat femurs. After five days, the femurs were removed, fixed in glutaraldehyde, dehydrated, and embedded in resin. Structural and chemical analyses were conducted on the samples using a variety of microscopy techniques to examine various factors of bone quality including: bone porosity, relative mineralization level, and the arrangement of collagen and mineral.
When analyzing the micro-structure, the hyperglycemic group showed increased porosity in the newly formed bone as compared to the control group. However, no significant differences were found in the nano-structure when analyzing the arrangement of collagen and mineral.Therefore, the results in this thesis suggest that alterations in micro-architecture rather than nano-architecture may play a pivotal role in the compromised bone healing in uncontrolled diabetes at this five-day time point. Future work should investigate additional time points in the bone healing process. / Thesis / Master of Applied Science (MASc) / According to the International Diabetes Federation, 387 million people worldwide are living with diabetes of which 46.3% are undiagnosed. Uncontrolled diabetes results in hyperglycemia, which is a condition where there is an increased level of glucose in the blood. When diabetes is not regulated correctly with medication, it leads to problems in the long-term success rate of dental implants. The objective of this thesis was to investigate the early stages of bone formation, which are accepted to be critical in the long-term success rate of dental implants, in hyperglycemic animal models compared to control groups using various microscopy techniques. The different techniques used allowed for the structural and elemental compositions of bone to be studied on the micro-scale and nano-scale. It was shown that at the 5-day healing time point studied, the micro-structure, rather than the nano-structure, was negatively altered in the hyperglycemic group compared to the control group.
|
224 |
High resolution three-dimensional time-of-flight magnetic resonance angiography and flow quantificationLin, Weili January 1993 (has links)
No description available.
|
225 |
Ultra-Wideband OFDM Radar and Communication SystemSchuerger, Jonathan Paul 23 April 2009 (has links)
No description available.
|
226 |
High-Resolution Modeling of Steel StructuresSurampudi, Bala Anjani Vasudha 07 November 2017 (has links)
No description available.
|
227 |
Using the R-Function to Study the High-Resolution Spectrometer (HRS) Acceptance for the 12 GeV Era Experiment E12-06-114 at JLABHamad, Gulakhshan M. January 2017 (has links)
No description available.
|
228 |
The Sedimentological and Paleontological Characteristics of the Portersville Shale, Conemaugh Group, Southeast OhioHuffer, Amanda R. 27 September 2007 (has links)
No description available.
|
229 |
Magnetic resonance imaging at ultra high field: implications for human neuroimagingBurgess, Richard Ely 29 September 2004 (has links)
No description available.
|
230 |
Image-based 3D metrology of non-collaborative surfacesKarami, Ali 11 April 2023 (has links)
Image-based 3D reconstruction has been employed in industrial metrology for micro measurements and quality control purposes. However, generating a highly-detailed and reliable 3D reconstruction of non-collaborative surfaces (textureless, shiny, and transparent) is still an open issue. This thesis presents various methodologies to successfully generate a highly-detailed and reliable 3D reconstruction of non-collaborative objects using the proposed photometric stereo image acquisition system. The first proposed method employs geometric construction to integrate photogrammetry and photometric stereo in order to overcome each technique's limitations and to leverage each technique's strengths in order to reconstruct an accurate and high-resolution topography of non-collaborative surfaces. This method uses accurate photogrammetric 3D measurements to rectify the global shape deviation of photometric stereo meanwhile uses photometric stereo to recover the high detailed topography of the object. The second method combines the high spatial frequencies of photometric stereo depth map with the low frequencies of photogrammetric depth map in frequency domain to produce accurate low frequencies while retaining high frequencies. For the third approach, we utilize light directionality to improve texture quality by leveraging shade and shadow phenomena using the proposed image-capturing system that employs several light sources for highlighting roughness and microstructures on the surface. And finally, we present two methods that effectively orient images by leveraging the low-contrast textures highlighted on object surfaces (roughness and 3D microstructures) using proper lighting system. Various objects with different surface characteristics including textureless, reflective, and transparent are used to evaluate different proposed approaches. To assess the accuracy of each approach, a comprehensive comparison between reference data and generated 3D points is provided.
|
Page generated in 0.0962 seconds