Spelling suggestions: "subject:"high voltage transformer"" "subject:"igh voltage transformer""
1 |
Partial discharge evaluation of a high voltage transformerKyere, Isaac Kwabena 02 1900 (has links)
M. Tech. (Power Engineering Department, Faculty of Engineering and Technology) -- Vaal University of Technology / This dissertation is devoted to the study of partial discharge evaluation of a high
voltage transformer. The 400 V/300 000 V (300 kV) high voltage transformer in the
high voltage laboratory was manufactured in 1967. Given the old age of the
transformer and the crucial importance of insulation systems, it is vital to assess the
condition of its insulation to ensure the effectiveness and the reliability of the
transformer as well as the safety of the personnel using it. In order to achieve that, it
is important to evaluate the partial discharge in the insulation system as this is the
main cause of destruction of insulation.
The phase-resolved partial discharge method was the main method used to perform
the partial discharge measurements in this research.
Partial discharge measurements were performed on a faulty 11 kV voltage
transformer. Defects were also created in samples of solid insulation at predetermined
locations with different shapes and sizes. The measurements taken on the
11 kV voltage transformer and samples of solid insulation formed a basis to prove
the validity of the assessment methods on the 300 kV transformer.
Using the method mentioned above, partial discharges were recorded with respect to
the phase of the applied voltage with the aid of a commercial instrument which
complies with IEC 60270, (ICM monitor - partial discharge detector from Power
Diagnostix Systems GmbH).
The observations from this study have furthered the understanding of partial
discharge processes. The patterns recorded were analysed in order to conclude about
the condition of the transformer. From the partial discharge pattern, the type and
location of partial discharges were concluded. The patterns obtained from the
transformer reveal that the device is healthy and can be operated up to 200 kV.
|
2 |
Detection and Position Location of Partial Discharges in Transformers Using Fiber Optic SensorsSong, Lijun 08 December 2004 (has links)
Power transformers are one of the most important components in the electrical energy network. Extending transformer life is very economically valuable due to power outage. Therefore the development of instruments to monitor the transformer condition is of great interest. Detection of partial discharges (PDs) in power transformers is an effective diagnostic because it may reveal and quantify an important aging factor and provide information on the condition of the transformer. However, partial discharge diagnostics are still not effectively used for online monitoring of transformers because of the complexity of PD measurements and difficulties of discriminating of PDs and other noise sources.
This thesis presents a further study of detection and location of partial discharges in power transformers based on previous work conducted at the Center for Photonics Technology (CPT) at Virginia Tech. The detection and positioning system consists of multiple extrinsic Fabry-Parot interferometric (EFPI) fiber acoustic sensors which can survive the harsh environment of oil-filled transformers.
This thesis work is focused on optimal arrangement of multiple sensors to monitor and locate PD activities in a power transformer. This includes the following aspects. First, the sensor design requirements are discussed in order to successfully detect and accurately position the PD sources. In the following sections, Finite Element Method (FEM) is used to model the EFPI sensor fabricated at CPT. Experiments were conducted to measure the angular dependence of the frequency response of the sensor. It is shown that within the range of ±45º incident angles, the sensitivity varies by 3-5dB. Finally, the thesis demonstrates a PD positioning experiment in a 500 gallon water tank (R à H = 74" à 30" cylinder) using a hyperbolic positioning algorithm and time difference of arrival (TDOA). Finally we demonstrated that 100% of the positioning data is bounded by a 22.7à 4.1à 5.3 mm₃ cube, with a sensing range of 810 mm using the leading edge method with FIR filtering. / Master of Science
|
3 |
Partial Discharge Detection and Localization in High Voltage Transformers Using an Optical Acoustic SensorLazarevich, Alison Kay 27 May 2003 (has links)
A partial discharge (PD) is the dissipation of energy caused by the buildup of localized electric field intensity. In high voltage devices such as transformers, this buildup of charge and its release can be symptomatic of problems associated with aging, such as floating components and insulation breakdown. This is why PD detection is used in power systems to monitor the state of health of high voltage transformers. If such problems are not detected and repaired, the strength and frequency of PDs increases and eventually leads to the catastrophic failure of the transformer, which can cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the potential for loss of service.
The PD phenomenon is manifested in a variety of physically observable signals including electric and acoustic pulses and is currently detected using a host of exterior measurement techniques. These techniques include electrical lead tapping and piezoelectric transducer (PZT) based acoustic detection. Many modern systems use a combination of these techniques because electrical detection is an older and proven technology and acoustic detection allows for the source to be located when several sensors are mounted to the exterior of the tank. However, if an acoustic sensor could be placed inside the tank, not only would acoustic detection be easier due to the increased signal amplitude and elimination of multipath interference, but positioning could also be performed with more accuracy in a shorter time.
This thesis presents a fiber optic acoustic sensing system design that can be used to detect and locate PD sources within a high voltage transformer. The system is based on an optical acoustic (OA) sensor that is capable of surviving the harsh environment of the transformer interior while not compromising the transformer's functionality, which allows for online detection and positioning. This thesis presents the theoretical functionality and experimental validation of a band-limited OA sensor with a usable range of 100-300 kHz, which is consistent with the frequency content of an acoustic pulse caused by a PD event. It also presents a positioning system using the time difference of arrival (TDOA) of the acoustic pulse with respect to four sensors that is capable of reporting the three-dimensional position of a PD to within ±5cm on any axis. / Master of Science
|
4 |
Μελέτη σφαλμάτων σε μετασχηματιστές υψηλής τάσης με αυτόματο μεταγωγέα τάσης (TAP changer)Παππά, Αγγελική 19 January 2011 (has links)
Στην παρούσα διπλωματική εργασία γίνεται αναλυτική περιγραφή της λειτουργίας της διάταξης του Μεταγωγέα Τάσης Υπό Φορτίο ενός μετασχηματιστή υψηλής τάσης 150 kV/ 21 kV. Επίσης, περιγράφονται και αναλύονται σφάλματα που εμφανίζονται σε μετασχηματιστές με Μεταγωγέα Τάσης Υπό Φορτίο με χρήση εμπειρικών δεδομένων από την εταιρεία Δ.Ε.Η. Α.Ε. και τη θεωρητική ανάλυση και εξήγησή τους μέσα από βιβλιογραφική μελέτη . Συγκεκριμένα, περιγράφονται τα αίτια που δημιουργούν αυτά τα σφάλματα, τα συμπτώματα που εμφανίζονται στο μετασχηματιστή και το μεταγωγέα τάσης , οι επιπτώσεις των σφαλμάτων αυτών στο μετασχηματιστή και τη διάταξη του μεταγωγέα τάσης . Επιπλέον, γίνεται αναφορά στα συστήματα προστασίας που διαθέτει ο μετασχηματιστής και ο μεταγωγέας τάσης προκειμένου να προστατευθεί από τις επιπτώσεις αυτών των σφαλμάτων. Στη συνέχεια, μελετάται συγκεκριμένο σφάλμα, που παρουσιάστηκε στο Μ/Σ 150 kV/21 kV Νο1 του Υ/Σ 150 kV/21 kV των Ελληνικών Ναυπηγείων Σκαραμαγκά, και καταγράφεται η αντιμετώπισή του βήμα προς βήμα σε συνεργασία με την εταιρεία ΠΑΡΑΛΟΣ ΤΕΧΝΙΚΗ Α.Ε., στην οποία ανατέθηκε η επίλυση του σφάλματος. Τέλος, μέσα από την προσομοίωση ενός Μ/Σ υψηλής τάσης με μεταγωγέα τάσης υπό φορτίο με χρήση του λογισμικού πακέτου MatLab/SimuLink κατανοούμε σε βάθος τη λειτουργία του μεταγωγέα τάσης υπό φορτίο. Η προσομοίωση περιλαμβάνει την εφαρμογή διαταραχών της τάσης του δικτύου στο Μ/Σ στην περίπτωση ορθής και εσφαλμένης λειτουργίας του οργάνου του ρυθμιστή τάσης, καθώς η εσφαλμένη λειτουργία του ρυθμιστή τάσης ήταν και η αιτία του σφάλματος στο Μ/Σ του Υ/Σ 150 kV/21 kV των Ελληνικών Ναυπηγείων Σκαραμαγκά. / The particular project deals with the detailed description of the layout and the operation of the on load tap changer belonging to a transformer of high tension 150kV/21 kV. Furthermore, it describes and analyzes faults that occurs to transformers with on load tap changer using empirical data from DEI S.A. (Public Power Corporation) as well as theoretical analysis and explanation based on bibliography. In particular, there are described the reasons behind these faults , the symptoms that appear to the transformer and the tap changer and the consequences to the transformer and the layout of the tap changer. Moreover, there is reference to the protection systems that the transformer and the tap changer have in order to be protected from the consequences of the faults. Further on, a particular troubleshooting is studied that occurred at the transformer 150 kV/21 kV no1 of the high voltage substation 150 kV/21 kV at the Hellenic Shipyards of Skaramagas and its handling is reported step by step in association with PARALOS TECHNICAL S.A. , the company which was assigned to solve the troubleshooting. Finally, the operation of the on load tap changer is studied in depth through simulation of a high voltage transformer with on load tap changer using MatLab/SimuLink software package. The simulation includes the application of voltage variations at the transformer, occurred to the high voltage network in the case of orderly or disorderly operation of the voltage regulator, as the faulty operation of the voltage regulator was the reason behind the troubleshooting of the transformer of the substation of 150 kV/ 21 kV at the Hellenic Shipyards of Skaramagas.
|
5 |
Vyvedení výkonu z rozvodny 110/22 kV Moravany u Brna / Feeding power out of 110/22 kV Moravany u Brna substationChromík, Aleš January 2013 (has links)
The aim of this Master’s thesis is the design and reconstruction of the high voltage distribution network for the company E. ON with focus on calculation of the stabilized operation and on the planning of new cable taps from the transformer substation Moravany u Brna. The first part of the theoretical analysis of the work deals with the inclusion of the distribution network into the power system and with principles of development and construction of high voltage networks. The second part includes a general calculation of stabilized operation of the power distribution network and a familiarization with the program PAS Off - Line Bison 4.0. The practical part of the thesis is focused on the calculation of the stabilized operation at the current state of transformer substation Moravany u Brna using the PAS Off - Line Bizon 4.0 V programme. This part also contains the design of six new cable lines which are needed to strengthen the power distribution in the southern part of the city Brno. The closing part of this chapter constitutes of a outdoor and indoor cable line renovation. These cables are connected to the transformer substation Moravany u Brna and a calculation of stabilized operation is also included in this part.
|
6 |
Thermal and Electrical Degradation of Resin Impregnated Paper Insulation for High Voltage Transformer BushingsJyothi, N S January 2014 (has links) (PDF)
The overall reliability of a power transformer depends to a great extent on the sound operation of the bushings thereof. In view of its overwhelming advantages, resin impregnated paper (RIP) is acquiring prominence over conventional oil impregnated paper (OIP) in transformer bushings. The main advantages of RIP bushings are low dielectric loss and capability of positioning them at any desired angle over the transformer. The RIP structure, being an all-solid system, is completely free from oil phase.
The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. The degradation of dry-type insulation such as RIP is often due to thermal and electrical stresses. The long time performance thereof, depends strongly, on the maximum operating temperature. In order to be able to predict the regional temperature, it is necessary to consider the thermal and electrical parameters of insulation in question; and to identify and solve the governing equations under the relevant boundary conditions.
Electrical failure of insulation is known to be an extremal random process wherein nominally identical specimens of equipment insulation, at constant stress fails at inordinately different times. In order to be able to estimate the life of power equipment like transformer bushing, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. The present work is an attempt to provide reliability and life estimation of High Voltage RIP bushing insulation. The literature survey carried out in this view indicate that investigation on thermal and electric field distribution and the models for failure under combined stress and analysis of the data so as to be able to estimate the possible life of RIP bushing is scanty. Having these aspects in focus, the scope of the present work is defined as:
(i) Mapping of the temperature and electric field distribution in the body of 400kV RIP bushing
(ii) Deduction of parameters of the probabilistic models for the failure under electrical and thermal ageing
(iii) Estimation of life based on diagnostic testing using PD
With this in view, the temperature distribution in the body of a 400kV RIP bushing is studied considering the heat generation both in central conductor and that in the insulation. Presence of multiple materials with non-confirming interfaces makes analytical solution rather difficult and hence numerical approach is adopted. In the present work, vertex-centered Finite Volume Method (FVM) is employed for both thermal and electrical analysis. The electric stress distribution is accurately evaluated considering both the non-zero conductivity of the RIP material and the presence of capacitive grading foils. These analysis has clearly shown that Stress grading foils uniforms the stress across the major portion of the bushing insulation
Enhancement of the electric conductivity by the temperature is not found to be affective in changing the electric field distribution
The temperature distribution is shown to have a maxima near the flange due to the influence of top oil temperature of the transformer
Heat generated in the dielectric due to the prevailing electric stress is shown to be insignificant. This ruled out the possibility of thermal runaway and hence the dielectric temperature is within the safe working limits for the bushing considered.
The deduction of physical models governing insulation failure depends on the nature of stress. In this work, the insulation failure at constant accelerated stress has been considered and the estimation of life is computed based on inverse power law coupled with Arrhenius law. A high degree of scatter is generic to the experimental data forming the ingredients to develop the models. In view of this, the concept of a random process is invoked. Probabilistic models for the failure of RIP bushing under synergy are adopted and an attempt is made to estimate the life. The well known Weibull distribution and probability plotting of life data is used in this endeavor. The maximum likelihood estimation is used to determine the scale and shape parameters of the Weibull distribution.
In the diagnosis of the extent of degradation of insulation due to PD, under long duration electric stress, a non-conventional voltage application method called the classical stepped stress method is adopted. In this technique, the voltage is applied in pre-determined steps over predetermined duration of time. The magnitude of voltage steps is carefully computed based on Miners law and the end-of-life is computed using inverse power law.
In summary, this thesis work has contributed to the thermal and electrical degradation of resin impregnated paper insulation for high voltage transformer bushing. The thermal and electrical field distributions computed in the body of bushing clearly shown that these stresses are well within the limit, thereby ruling out the possibility of a thermal runaway. Comparing the estimates of the most probable life of RIP, based on several methods appears to show that any of the method can be adopted. However, as matter of caution and safety, the lowest among them can be taken as a reasonable estimate.
|
Page generated in 0.1063 seconds