• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Observational, numerical, and laboratory methods in high contrast imaging

Gerard, Benjamin Lionel 27 July 2016 (has links)
The search to directly image and characterize exoplanets that are initially hidden below the stellar and instrumental noise relies on the use of both extreme adaptive optics (AO) and a subsequent point spread function (PSF) subtraction pipeline. In this thesis I present my research on both real-time AO techniques and post-processing PSF subtraction techniques. First, I present a new PSF subtraction algorithm designed to image the HR 8799 debris disk using the Hubble Space Telescope. I find an over-luminosity after PSF subtraction that may be from the inner disk and/or planetesimal belt components of this system, but ultimately conclude that this is likely a non-detection as a result of telescope stability and broadband chromatic effects. Thus, assuming a non-detection, I derive upper limits on the HR 8799 dust belt mass in small grains, consistent with measurements of other debris disk halos. This important result suggests that a detection may not be possible until the rise of future, more stable space telescopes. Next, I present a new PSF subtraction algorithm applied to current campaign data from the Gemini Planet Imager (GPI), designed to optimize the GPI planet detection sensitivity of narrow orbit planets. My results, while still being investigated, seem to show that current algorithms are already optimized, and that limited gains can be achieved with my new algorithm. Finally, I apply a new real-time AO nulling technique, called super-Nyquist wavefront control (SNWFC), to be used on future 30 m class telescopes to image wide-orbit exoplanets. I demonstrate application of SNWFC in both a deterministic laboratory experiment and coronagraphic simulations using an interferometric nulling technique, suggesting that this technique would allow higher SNR characterization of wide-orbit exoplanets on future telescopes. / Graduate / 0606, 0752
2

The path to visible extreme adaptive optics with MagAO-2K and MagAO-X

Males, Jared R., Close, Laird M., Guyon, Olivier, Morzinski, Katie M., Hinz, Philip, Esposito, Simone, Pinna, Enrico, Xompero, Marco, Briguglio, Runa, Riccardi, Armando, Puglisi, Alfio, Mazin, Ben, Ireland, Michael J., Weinberger, Alycia, Conrad, Al, Kenworthy, Matthew, Snik, Frans, Otten, Gilles, Jovanovic, Nemanja, Lozi, Julien 27 July 2016 (has links)
The next generation of extremely large telescopes (ELTs) have the potential to image habitable rocky planets, if suitably optimized. This will require the development of fast high order "extreme" adaptive optics systems for the ELTs. Located near the excellent site of the future GMT, the Magellan AO system (MagAO) is an ideal on-sky testbed for high contrast imaging development. Here we discuss planned upgrades to MagAO. These include improvements in WFS sampling (enabling correction of more modes) and an increase in speed to 2000 Hz, as well as an H2RG detector upgrade for the Clio infrared camera. This NSF funded project, MagAO-2K, is planned to be on-sky in November 2016 and will significantly improve the performance of MagAO at short wavelengths. Finally, we describe MagAO-X, a visible-wavelength extreme-AO "afterburner" system under development. MagAO-X will deliver Strehl ratios of over 80% in the optical and is optimized for visible light coronagraphy.
3

Three years of harvest with the vector vortex coronagraph in the thermal infrared

Absil, Olivier, Mawet, Dimitri, Karlsson, Mikael, Carlomagno, Brunella, Christiaens, Valentin, Defrère, Denis, Delacroix, Christian, Femenía Castella, Bruno, Forsberg, Pontus, Girard, Julien, Gómez González, Carlos A., Habraken, Serge, Hinz, Philip M., Huby, Elsa, Jolivet, Aïssa, Matthews, Keith, Milli, Julien, Orban de Xivry, Gilles, Pantin, Eric, Piron, Pierre, Reggiani, Maddalena, Ruane, Garreth J., Serabyn, Gene, Surdej, Jean, Tristram, Konrad R. W., Vargas Catalán, Ernesto, Wertz, Olivier, Wizinowich, Peter 09 August 2016 (has links)
For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 pm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
4

High-Contrast Near-Infrared Studies of Planetary Systems and their Circumstellar Environments

Rodigas, Timothy John January 2013 (has links)
Planets are thought to form in circumstellar disks, leaving behind planetesimals that collide to produce dusty debris disks. Characterizing the architectures of planetary systems, along with the structures and compositions of debris disks, can therefore help answer questions about how planets form. In this thesis, I present the results of five papers (three published, two in preparation) concerning the properties of extrasolar planetary systems and their circumstellar environments. Chapters 2 and 3 are studies of radial velocity (RV) exoplanetary systems. For years astronomers have been puzzled about the large number of RV-detected planets that have eccentric orbits (e>0.1). In Chapter 2 I show that this problem can partially be explained by showing that two circular-orbit planets can masquerade as a single planet on an eccentric orbit. I use this finding to predict that planets with mildly eccentric orbits are the most likely to have massive companions on wide orbits, potentially detectable by future direct imaging observations. Chapter 3 presents such a direct imaging study of the 14 Her planetary system. I significantly constrain the phase space of the putative candidate 14 Her c and demonstrate the power of direct imaging/RV overlap. Chapters 4 and 5 are high-contrast 2-4 μm imaging studies of the edge-on debris disks around HD 15115 and HD 32297. HD 15115's color is found to be gray, implying large grains 1-10 μm in size reside in stable orbits in the disk. HD 32297's disk color is red from 1-4 μm. Cometary material (carbon, silicates, and porous water ice) are a good match at 1-2 μm but not at L'. Tholins, organic material that is found in outer solar system bodies, or small silicates can explain the disk's red color but not the short wavelength data. Chapter 6 presents a dynamical study of dust grains in the presence of massive planets. I show that the width of a debris disk increases proportionally with the mass of its shepherding planet. I then make predictions for the masses and orbits of putative planets in five well-known disks. In Chapter 7, I summarize and discuss plans for future research in the exoplanet field.
5

Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects

January 2017 (has links)
abstract: The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar spectral type objects, which might be due to the planet still transitioning from to L-to-T. Model atmospheres indicate a cooler effective temperature best fit by a patchy cloud atmosphere making 51 Eri b an excellent candidate for future variability studies with the James Webb Space Telescope. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2017
6

Markov Chain Monte Carlo Modeling of High-Redshift Quasar Host Galaxies in Hubble Space Telescope Imaging

January 2014 (has links)
abstract: Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content. / Dissertation/Thesis / Ph.D. Astrophysics 2014
7

Spatial linear dark field control: stabilizing deep contrast for exoplanet imaging using bright speckles

Miller, Kelsey, Guyon, Olivier, Males, Jared 30 October 2017 (has links)
Direct imaging of exoplanets requires establishing and maintaining a high-contrast dark field (DF) within the science image to a high degree of precision (10(-10)). Current approaches aimed at establishing the DF, such as electric field conjugation (EFC), have been demonstrated in the lab and have proven capable of high-contrast DF generation. The same approaches have been considered for the maintenance of the DF as well. However, these methods rely on phase diversity measurements, which require field modulation; this interrupts the DF and consequently competes with the science acquisition. We introduce and demonstrate spatial linear dark field control (LDFC) as an alternative technique by which the high-contrast DF can be maintained without modulation. Once the DF has been established by conventional EFC, spatial LDFC locks the high-contrast state of the DF by operating a closed loop around the linear response of the bright field (BF) to wavefront variations that modify both the BF and the DF. We describe the fundamental operating principles of spatial LDFC and provide numerical simulations of its operation as a DF stabilization technique that is capable of wavefront correction within the DF without interrupting science acquisition. (c) The Authors.
8

Evolutionary timescales of AO-produced speckles at NIR wavelengths

Goebel, Sean B., Guyon, Olivier, Hall, Donald N. B., Jovanovic, Nemanja, Atkinson, Dani E. 26 July 2016 (has links)
We present measurements of the evolutionary timescales of speckles around adaptive optics-corrected PSFs. We placed a SELEX SAPHIRA HgCdTe detector behind the SCExA0 instrument at Subaru Telescope. We analyzed the behavior of speckles at radial distances of 2-8 A/D away from the diffraction-limited PSF in H-band (-1.6 m) images collected at 1 kHz framerates. Speckles evolve with a variety of timescales, and these have not previously been studied at near-infrared wavelengths. Ultimately we would like to image reflected-light exoplanets, which necessitates a fast speckle control loop. Based on our measurements, we calculate the parameters of an optimized control loop that would enable such observations.
9

Imaging protoplanets: observing transition disks with non-redundant masking

Sallum, Steph, Eisner, Josh, Close, Laird M., Hinz, Philip M., Follette, Katherine B., Kratter, Kaitlin, Skemer, Andrew J., Bailey, Vanessa P., Briguglio, Runa, Defrere, Denis, Macintosh, Bruce A., Males, Jared R., Morzinski, Katie M., Puglisi, Alfio T., Rodigas, Timothy J., Spalding, Eckhart, Tuthill, Peter G., Vaz, Amali, Weinberger, Alycia, Xomperio, Marco 04 August 2016 (has links)
Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.
10

A search for debris disks with a dual channel adaptive optics imaging polarimeter

Potter, Daniel Edward 05 1900 (has links)
A dual channel polarimeter was incorporated into the Hokupa'a adaptive optics system mounted on the Gemini North telescope to enhance sensitivity to detecting the light scattered by circumstellar material. The technique suppressed noise introduced by non-repeatable variations of the point spread function which limit the sensitivity of non-simultaneous adaptive optics imaging. Polarimetric images of the classical T-Tauri star environments around GG Tauri Aab, TW Hydrae, LkCa 15, LkHα 242, GM Aurigae, and SR24 N/S were observed to establish the instrument's sensitivity. A survey of nearby ( d < 25 pc), young ( age < 1 Gyr), solar-analog stars was undertaken with the polarimeter to search for collisionally active debris disks analogous to our young solar system. Of the 24 stars sampled, none were found to have obvious scattered light signatures. Isotropic and Mie scattering model images of debris disks were used to constrain the amount of material around the survey stars to no more than M dust ∼ 10 -2 M Moon of 1-10μ m sized dust contained between 5-50 AU from the sample stars. Particle lifetimes under the influence of the Poynting Robertson Drag, radiation pressure, and solar wind drag are calculated as a function of central star spectral type. The corpuscular drag from stellar winds shorten dust lifetimes by an amount inversely proportional to the stellar wind mass-loss rate. This translates into dust lifetimes 100-1000 times shorter around young solar analog stars compared to the present day. This effect, cam significantly reduce the near-IR detectability of debris disks around these chromospherically active stars.

Page generated in 0.0911 seconds