• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of nulling interferometry devices for the detection and characterization of extrasolar planets

Hanot, Charles 26 April 2011 (has links)
Most of the 500 extra-solar planets detected to date have been discovered either by radial velocity measurements or photometric transits but very few by direct techniques. Direct imaging of exoplanets, however, gives access to a wider variety of information on the planet, from its orbital position to its spectrum, but is a difficult task to achieve because of the small angular separation between the star and its planet and the large flux ratio between them. For these two reasons, direct imaging of exoplanets has up to now been limited to the most favorable cases of bright giant exoplanets orbiting at large distances from their host stars. %The present work aims at developing the high dynamic range capabilities of single- and multi-aperture imaging techniques for the detection and characterization of planetary systems. The first part of this work reports studies of adaptive optics-aided ground-based telescopes and their complementarity with space-based facilities for the detection of extra-solar planets. Results obtained with the Well-Corrected Subaperture at Palomar observatory on narrow multiple systems are then used to illustrate this study. The second part of this work is dedicated to stellar and nulling interferometry. We first present a new data reduction technique for interferometry using the statistical distributions of the noise sources to significantly improve the precision of interferometric measurements. This technique is then applied to the Palomar Fiber Nuller instrument at Palomar observatory to constrain the presence of dust and companions in the innermost regions of Vega's stellar environment and to derive stellar angular diameters with very high accuracies. Finally, we introduce an on-going survey that we are pursuing with the AMBER interferometric instrument at the Very Large Telescope (Cerro Paranal, Chile) aiming at detecting sub-stellar companions around young main sequence stars.
2

The LUVOIR architecture ``A'' coronagraph instrument

Pueyo, Laurent, Zimmerman, Neil, Bolcar, Matthew, Groff, Tyler, Stark, Christopher, Ruane, Garreth, Jewell, Jeffrey, Wang, Ji, Redding, David, Mazoyer, Johan, Fograty, Kevin, Juanola-Parramon, Roser, Domagal-Goldman, shawn, Roberge, Aki, Mandell, Avi, Guyon, Olivier, Soummer, Remi, St Laurent, Katheryn 13 September 2017 (has links)
In preparation for the Astro 2020 Decadal Survey NASA has commissioned the study four flagship missions spanning to a wide range of observable wavelengths: the Origins Space Telescope (OST, formerly the Far-Infrared Surveyor), Lynx (formerly the X-ray Surveyor), the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx). One of the key scientific objectives of the latter two is the detection and characterization of the earth-like planets around nearby stars using the direct imaging technique (along with a broad range of investigations regarding the architecture of and atmospheric composition exoplanetary systems using this technique). As a consequence dedicated exoplanet instruments are being studied for these mission concepts. This paper discusses the design of the coronagraph instrument for the architecture "A" (15 meters aperture) of LUVOIR. The material presented in this paper is aimed at providing an overview of the LUVOIR coronagraph instrument. It is the result of four months of discussions with various community stakeholders (scientists and technologists) regarding the instrument's basic parameters followed by meticulous design work by the the GSFC Instrument Design Laboratory team. In the first section we review the main science drivers, presents the overall parameters of the instrument (general architecture and backend instrument) and delve into the details of the currently envisioned coronagraph masks along with a description of the wavefront control architecture. Throughout the manuscript we describe the trades we made during the design process. Because the vocation of this study is to provide a baseline design for the most ambitious earth-like finding instrument that could be possibly launched into the 2030's, we have designed an complex system privileged that meets the ambitious science goals out team was chartered by the LUVOIR STDT exoplanet Working Group. However in an effort to minimize technological risk we tried to maximize the number of technologies that will be matured by the WFIRST coronagraph instruments.
3

Three years of harvest with the vector vortex coronagraph in the thermal infrared

Absil, Olivier, Mawet, Dimitri, Karlsson, Mikael, Carlomagno, Brunella, Christiaens, Valentin, Defrère, Denis, Delacroix, Christian, Femenía Castella, Bruno, Forsberg, Pontus, Girard, Julien, Gómez González, Carlos A., Habraken, Serge, Hinz, Philip M., Huby, Elsa, Jolivet, Aïssa, Matthews, Keith, Milli, Julien, Orban de Xivry, Gilles, Pantin, Eric, Piron, Pierre, Reggiani, Maddalena, Ruane, Garreth J., Serabyn, Gene, Surdej, Jean, Tristram, Konrad R. W., Vargas Catalán, Ernesto, Wertz, Olivier, Wizinowich, Peter 09 August 2016 (has links)
For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 pm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
4

Coronographes spatiaux : Solar Orbiter / Metis, Smese / Lyot, Proba-3 / Aspiics

Venet, Melanie 14 April 2011 (has links)
La couronne solaire est la partie de l'atmosphère du Soleil qui s'étend de la photosphère (surface solaire d'où sont émis les photons) jusque dans le milieu interplanétaire. Sa compréhension relève d'un enjeu majeur car elle est à l'origine de phénomènes qui peuvent perturber les télécommunications, les êtres vivants et même le climat. L'instrument privilégié pour l'observer est le coronographe, système optique occultant le disque solaire au profit de la couronne, un million de fois moins intense. Ma thèse porte sur son étude, en particulier à travers les projets spatiaux :- SOLAR ORBITER, qui doit s'approcher du Soleil à 0.2 unité astronomique (distance Terre-Soleil), permettant ainsi une très haute résolution spatiale ;- SMESE, en coopération avec la Chine, qui étudiera la couronne dans l'infrarouge lointain ;- et ASPIICS, dont l'occulteur externe sera placé à 150 m de l'instrument imageur, permettant d'observer la couronne dans des conditions proches d'une éclipse solaire naturelle.Le premier aspect abordé est la réjection de la lumière parasite instrumentale, dont l'optimisation est une des problématiques majeures en coronographie. Le second concerne les modes d'observation par imagerie en lumière blanche, imagerie monochromatique, et interférométrie, en particulier le Fabry Perot. Le développement et l'amélioration de ces techniques permettra des avancées considérables en terme de résolution et l'accès à la couronne toujours plus proche de la surface du Soleil, lieu encore mal connu où l'activité solaire prend naissance. / The solar corona is the part of the Sun's atmosphere that extends from the photosphere (solar surface where the photons are emitted) into the interplanetary medium. Its understanding is a major issue because it is the source of phenomena that can disrupt telecommunications, living beings and even climate. The most appropriate tool to observe it is the coronagraph, an optical system obscuring the solar disk in favor of the corona, a million times fainter. My thesis deals with its review, particularly through the spaceprojects :- Solar Orbiter, which will approach the Sun at 0.2 astronomical unit (distance between Earth and Sun), allowing a very high spatial resolution ;- SMESE, in cooperation with China, which should study the corona in the Lymanalpha (and far infrared) ;- and ASPIICS, which will observe the corona in conditions close to a natural solar eclipse, with its occulting disk located at 150 m from the imaging instrument.The first point tackled is the rejection of instrumental stray light, whose optimization is one of the major problems in coronagraphy. The second concerns the methods of observation and imaging in white light, monochromatic imaging, and interferometry, in particular the Fabry Perot. The development and improvement of these techniques will allow considerable progress in terms of resolution and access to the corona ever closer to the Sun's surface, the location yet little known where the solar activity originates.
5

Keck Planet Imager and Characterizer: concept and phased implementation

Mawet, D., Wizinowich, P., Dekany, R., Chun, M., Hall, D., Cetre, S., Guyon, O., Wallace, J. K., Bowler, B., Liu, M., Ruane, G., Serabyn, E., Bartos, R., Wang, J., Vasisht, G., Fitzgerald, M., Skemer, A., Ireland, M., Fucik, J., Fortney, J., Crossfield, I., Hu, R., Benneke, B. 26 July 2016 (has links)
The Keck Planet Imager and Characterizer (KPIC) is a cost-effective upgrade path to the W.M. Keck observatory (WMKO) adaptive optics (AO) system, building on the lessons learned from first and second-generation extreme AO (ExA0) coronagraphs. KPIC will explore new scientific niches in exoplanet science, while maturing critical technologies and systems for future ground-based (TMT, FELT, GMT) and space-based planet imagers (HabEx, LUVOIR). The advent of fast low-noise IR cameras (IR-APD, MKIDS, electron injectors), the rapid maturing of efficient wavefront sensing (WFS) techniques (Pyramid, Zernike), small inner working angle (IWA) coronagraphs (e.g., vortex) and associated low-order wavefront sensors (LOWFS), as well as recent breakthroughs in high contrast high resolution spectroscopy, open new direct exoplanet exploration avenues that are complementary to planet imagers such as VLT-SPHERE and the Gemini Planet Imager (GPI). For instance, the search and detailed characterization of planetary systems on solar-system scales around late-type stars, mostly beyond SPHERE and GPI's reaches, can be initiated now at WMKO.
6

Mesure de front d'onde post-coronographique à haute précision pour l'imagerie à haut contraste : appplication sol et espace / Post-coronographique wave-front sensing for high contrast imaging : ground and space based applications.

Paul, Baptiste 29 September 2014 (has links)
L'observation directe des exoplanètes est rendue difficile par l'énorme contraste entre la planète et l'étoile autour de laquelle elle gravite, ainsi que la faible séparation angulaire entre ces deux corps. Un tel niveau de contraste aussi proche de l'étoile être atteint en couplant l'imagerie à haute résolution angulaire et la coronographie, qui atténue le flux en provenance de l'étoile ; les performances ultimes d'un instrument d'imagerie à haut contraste sont alors limitées par ses aberrations quasi-statique. Au cours de cette thèse a été conçu un ASO plan focal dédié à la calibration des aberrations quasi-statiques dans les systèmes d'imagerie à haut contraste. Cet ASO, baptisé COFFEE, permet d'estimer les aberrations en amont et en aval du coronographe à partir d'images coronographiques acquises en plan focal différant d'une phase de diversité connue introduite en amont du coronographe. Au cours de cette thèse, COFFEE a été conçu et validé par simulations numérique et démontré expérimentalement sur banc. L'identification de plusieurs facteurs limitant la précision de l'estimation des aberrations a ensuite induit une modification du formalisme sur lequel repose COFFEE pour l'adapter à l'estimation d'aberrations de hautes fréquences spatiales avec une précision nanométrique. Cette version hauts ordres de COFFEE a été utilisée avec succès sur l'instrument SPHERE, où la compensation des aberrations estimées par COFFEE a permis d'optimiser le contraste. Enfin, une nouvelle méthode de compensation a été développée pour permettre d'atteindre de très hauts niveaux de contraste sur le détecteur scientifique. / Performing an exoplanet direct detection means being able to image an object as faint as an extra-solar planet very close to its parent star. After compensation of the turbulence by the XAO loop and most of the star light removed by a coronagraph, the ultimate limitation of high contrast imaging systems lies in its quasi-static aberrations that creates a residual signal which limit the achievable contrast on the scientific detector. To increase the achievable contrast on the detector, these aberrations must be compensated for, ideally using focal plane data recorded from the scientific detector to avoid differential aberrations. The aim of this thesis was to develop a focal-plane wavefront sensor (WFS) dedicated to the estimation of quasi-static aberrations in high contrast imaging systems. This WFS, called COFFEE, estimates the aberrations both upstream and downstream of the coronagraph using coronagraphic focal plane images that differ from a known diversity aberrations introduced upstream of the coronagraph. During this research work, COFFEE has been developed, tested using numerical simulations and demonstrated on an in-house bench. Considering the limitations of the estimation accuracy, COFFEE's formalism has then been modified to allow it to estimate high frequencies aberrations with nanometric precision. This extended version of COFFEE has been successfully used on SPHERE to optimize the contrast on the scientific detector of the instrument using COFFEE in a dedicated compensation process. Lastly, a new compensation method has been developed in order to reach very high contrast levels on the scientific detector.

Page generated in 0.0554 seconds