Spelling suggestions: "subject:"performancecomputing"" "subject:"performance.comparing""
371 |
A Shared-Memory Coupled Architecture to Leverage Big Data Frameworks in Prototyping and In-Situ Analytics for Data Intensive Scientific WorkflowsLemon, Alexander Michael 01 July 2019 (has links)
There is a pressing need for creative new data analysis methods whichcan sift through scientific simulation data and produce meaningfulresults. The types of analyses and the amount of data handled by currentmethods are still quite restricted, and new methods could providescientists with a large productivity boost. New methods could be simpleto develop in big data processing systems such as Apache Spark, which isdesigned to process many input files in parallel while treating themlogically as one large dataset. This distributed model, combined withthe large number of analysis libraries created for the platform, makesSpark ideal for processing simulation output.Unfortunately, the filesystem becomes a major bottleneck in any workflowthat uses Spark in such a fashion. Faster transports are notintrinsically supported by Spark, and its interface almost denies thepossibility of maintainable third-party extensions. By leveraging thesemantics of Scala and Spark's recent scheduler upgrades, we forceco-location of Spark executors with simulation processes and enable fastlocal inter-process communication through shared memory. This provides apath for bulk data transfer into the Java Virtual Machine, removing thecurrent Spark ingestion bottleneck.Besides showing that our system makes this transfer feasible, we alsodemonstrate a proof-of-concept system integrating traditional HPC codeswith bleeding-edge analytics libraries. This provides scientists withguidance on how to apply our libraries to gain a new and powerful toolfor developing new analysis techniques in large scientific simulationpipelines.
|
372 |
In Situ Visualization of Performance Data in Parallel CFD ApplicationsFalcao do Couto Alves, Rigel 19 January 2023 (has links)
This thesis summarizes the work of the author on visualization of performance data in parallel Computational Fluid Dynamics (CFD) simulations.
Current performance analysis tools are unable to show their data on top of complex simulation geometries (e.g. an aircraft engine). But in CFD simulations, performance is expected to be affected by the computations being carried out, which in turn are tightly related to the underlying computational grid.
Therefore it is imperative that performance data is visualized on top of the same computational geometry which they originate from. However, performance tools have no native knowledge of the underlying mesh of the simulation. This scientific gap can be filled by merging the branches of HPC performance analysis and in situ visualization of CFD simulations data, which shall be done by integrating existing, well established state-of-the-art tools from each field.
In this threshold, an extension for the open-source performance tool Score-P was designed and developed, which intercepts an arbitrary number of manually selected code regions (mostly functions) and send their respective measurements – amount of executions and cumulative time spent – to the visualization software ParaView – through its in situ library, Catalyst –, as if they were any other flow-related variable. Subsequently the tool was extended with the capacity to also show communication data (messages sent between MPI ranks) on top of the CFD mesh. Testing and evaluation are done with two industry-grade codes: Rolls-Royce’s CFD code, Hydra, and Onera, DLR and Airbus’ CFD code, CODA.
On the other hand, it has been also noticed that the current performance tools have limited capacity of displaying their data on top of three-dimensional, framed (i.e. time-stepped) representations of the cluster’s topology. Parallel to that, in order for the approach not to be limited to codes which already have the in situ adapter, it was extended to take the performance data and display it – also in codes without in situ – on a three-dimensional, framed representation of the hardware resources being used by the simulation. Testing is done with the Multi-Grid and Block Tri-diagonal NAS Parallel Benchmarks (NPB), as well as with Hydra and CODA again. The benchmarks are used to explain how the new visualizations work, while real performance analyses are done with the industry-grade CFD codes.
The proposed solution is able to provide concrete performance insights, which would not have been reached with the current performance tools and which motivated beneficial changes in the respective source code in real life. Finally, its overhead is discussed and proven to be suitable for usage with CFD codes. The dissertation provides a valuable addition to the state of the art of highly parallel CFD performance analysis and serves as basis for further suggested research directions.
|
373 |
Parallel optimization based operational planning to enhance the resilience of large-scale power systemsGong, Lin 01 May 2020 (has links)
The resilience of power systems is attracting extensive attention in recent years and needs to be further enhanced in the future, as potential threats from severe events such as extreme weather, geomagnetic storm, as well as extended fuel disruption, which are not easy to be quantified, predicted, or anticipated, are still challenging the modern power industry. To increase the resilience, proper operational planning considering potential impacts of severe events could effectively enable power systems to prepare for, operate through, and recover from those events and mitigate their negative economic, social, and humanitarian consequences by fully deploying existing system resources and operational measures. In this dissertation, operational planning problems in the bulk power system considering potential threats from severe events are focused, including the co-optimization of security-constrained unit commitment and transmission switching with consideration of transmission line outages probably caused by severe weather events, the security-constrained optimal power flow under potential impacts from geomagnetic storms, and the optimal operational planning to prevent electricity-natural gas systems from possible risks of natural gas supply disruptions. Notice that systematic, comprehensive, and consistent operational strategies should be conducted across the entire system to achieve superior resilience enhancement solution, which, along with increased size and complexity of modern energy systems, makes the proposed operational planning problems mathematically large-size and computationally complex optimization problems, and practically difficult to solve, especially when comprehensive operational measures and resourceful components are incorporated. In order to tackle such a challenge, the parallel optimization based approaches are developed in the proposed research, which fully decompose an originally large and complex problem into multiple independent small subproblems, simultaneously solve them in a fully parallel manner on scalable multiple-core computing platforms, and iteratively coordinate their results by using mathematical programming methods to achieve optimal solutions that satisfy engineering requirements of power system operations in practice. As a result, by efficiently solving optimal operational planning problems of large-scale power systems, their secure and economic operations in the presence of severe events like hurricanes, geomagnetic storms, and natural gas supply disruptions can be ensured, which indicates the resilience of power systems is effectively enhanced.
|
374 |
A Framework for Efficient Management of Fault Tolerance in Cloud Data Centres and High-Performance Computing Systems: An Investigation and Performance analysis of a Cloud Based Virtual Machine Success and Failure Rate in a typical Cloud Computing Environment and Prediction MethodsMohammed, Bashir January 2019 (has links)
Cloud computing is increasingly attracting huge attention both in academic research and industry initiatives and has been widely used to solve advanced computation problem. As cloud datacentres continue to grow in scale and complexity, the risk of failure of Virtual Machines (VM) and hosts running several jobs and processing large amount of user request increases and consequently becomes even more difficult to predict potential failures within a datacentre. However, even though fault tolerance continues to be an issue of growing concern in cloud and HPC systems, mitigating the impact of failure and providing accurate predictions with enough lead time remains a difficult research problem. Traditional existing fault-tolerance strategies such as regular check-point/restart and replication are not adequate due to emerging complexities in the systems and do not scale well in the cloud due to resource sharing and distributed systems networks.
In the thesis, a new reliable Fault Tolerance scheme using an intelligent optimal strategy is presented to ensure high system availability, reduced task completion time and efficient VM allocation process.
Specifically, (i) A generic fault tolerance algorithm for cloud data centres and HPC systems in the cloud was developed. (ii) A verification process is developed to a fully dimensional VM specification during allocation in the presence of fault. In comparison to existing approaches, the results obtained shows an increase in success rate of the VMs, a reduction in response time of VM allocation and an improved overall performance. (iii) A failure prediction model is further developed, and the predictive capabilities of machine learning is explored by applying several algorithms to improve the accuracy of prediction. Experimental results indicate that the average prediction accuracy of the proposed model when predicting failure is about 90% accurate compared to existing algorithms, which implies that the approach can effectively predict potential system and application failures within the system.
|
375 |
Exploring High Performance SQL Databases with Graphics Processing UnitsHordemann, Glen J. 26 November 2013 (has links)
No description available.
|
376 |
Techniques for Characterizing the Data Movement Complexity of ComputationsElango, Venmugil 08 June 2016 (has links)
No description available.
|
377 |
Rethinking I/O in High-Performance Computing EnvironmentsAli, Nawab January 2009 (has links)
No description available.
|
378 |
Towards Efficient Data Analysis and Management of Semi-structured DataTatikonda, Shirish 08 September 2010 (has links)
No description available.
|
379 |
Specification, Configuration and Execution of Data-intensive Scientific ApplicationsKumar, Vijay Shiv 14 December 2010 (has links)
No description available.
|
380 |
An Application-Attuned Framework for Optimizing HPC Storage SystemsPaul, Arnab Kumar 19 August 2020 (has links)
High performance computing (HPC) is routinely employed in diverse domains such as life sciences, and Geology, to simulate and understand the behavior of complex phenomena. Big data driven scientific simulations are resource intensive and require both computing and I/O capabilities at scale. There is a crucial need for revisiting the HPC I/O subsystem to better optimize for and manage the increased pressure on the underlying storage systems from big data processing. Extant HPC storage systems are designed and tuned for a specific set of applications targeting a range of workload characteristics, but they lack the flexibility in adapting to the ever-changing application behaviors. The complex nature of modern HPC storage systems along with the ever-changing application behaviors present unique opportunities and engineering challenges.
In this dissertation, we design and develop a framework for optimizing HPC storage systems by making them application-attuned. We select three different kinds of HPC storage systems - in-memory data analytics frameworks, parallel file systems and object storage. We first analyze the HPC application I/O behavior by studying real-world I/O traces. Next we optimize parallelism for applications running in-memory, then we design data management techniques for HPC storage systems, and finally focus on low-level I/O load balance for improving the efficiency of modern HPC storage systems. / Doctor of Philosophy / Clusters of multiple computers connected through internet are often deployed in industry and laboratories for large scale data processing or computation that cannot be handled by standalone computers. In such a cluster, resources such as CPU, memory, disks are integrated to work together. With the increase in popularity of applications that read and write a tremendous amount of data, we need a large number of disks that can interact effectively in such clusters. This forms the part of high performance computing (HPC) storage systems. Such HPC storage systems are used by a diverse set of applications coming from organizations from a vast range of domains from earth sciences, financial services, telecommunication to life sciences. Therefore, the HPC storage system should be efficient to perform well for the different read and write (I/O) requirements from all the different sets of applications. But current HPC storage systems do not cater to the varied I/O requirements. To this end, this dissertation designs and develops a framework for HPC storage systems that is application-attuned and thus provides much improved performance than other state-of-the-art HPC storage systems without such optimizations.
|
Page generated in 0.0964 seconds