• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE POTENTIAL OF A LATENT HEAT THERMAL ENERGY STORAGE : An Investigation on Rocklunda's Sport Facilities

Egersand, Anton, Fransson, Emil January 2021 (has links)
The world is ever increasing in its energy usage, making energy that is sustainable and secure harder to achieve. To fulfil the Paris agreement to limit global warming, the world needs to transition from fossil fuels toward more renewable energy sources, like wind and solar, but these sources have fluctuation in supply which often create a mismatch with demand. To combat this issue, thermal energy storage can be utilized, and one such technology is latent heat thermal energy storage. This study aimed to investigate the potential of latent heat thermal energy storage by developing a simple model of such a system and studying its impact on Rocklunda’s sport facilities. The model was developed by using MATLAB, primarily using the photovoltaic overproduction of the facilities to store as energy for the latent heat thermal energy storage. The implemented storage, based on the model’s result, had overall positive impact on the facilities. The optimized storage capacity was about 510 kWh, which throughout the storage’s lifetime would save ~4 989 MWh worth of heat by using the best performing phase change material: aluminium-silicon. The storage would also be able to utilize ~82% of the annual photovoltaic overproduction that would otherwise be unused/sold as well as reducing the heat demand by ~12% by using the heat stored via the storage. The implementation also proved to have beneficial effects on the environment as the saved heat was the equivalent of mitigating ~304 ton of CO2 emissions. Furthermore, there is a profit of ~236 000 SEK. / Reduction and Reuse of energy with interconnected Distribution and Demand (R2D2)

Page generated in 0.0613 seconds