• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 24
  • 17
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 257
  • 257
  • 132
  • 77
  • 50
  • 48
  • 41
  • 39
  • 37
  • 36
  • 32
  • 28
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Random Subspace Analysis on Canonical Correlation of High Dimensional Data

Yamazaki, Ryo January 2016 (has links)
High dimensional, low sample, data have singular sample covariance matrices,rendering them impossible to analyse by regular canonical correlation (CC). Byusing random subspace method (RSM) calculation of canonical correlation be-comes possible, and a Monte Carlo analysis shows resulting maximal CC canreliably distinguish between data with true correlation (above 0.5) and with-out. Statistics gathered from RSMCCA can be used to model true populationcorrelation by beta regression, given certain characteristic of data set. RSM-CCA applied on real biological data however show that the method can besensitive to deviation from normality and high degrees of multi-collinearity.
12

Independence Screening in High-Dimensional Data

Wauters, John, Wauters, John January 2016 (has links)
High-dimensional data, data in which the number of dimensions exceeds the number of observations, is increasingly common in statistics. The term "ultra-high dimensional" is defined by Fan and Lv (2008) as describing the situation where log(p) is of order O(na) for some a in the interval (0, ½). It arises in many contexts such as gene expression data, proteomic data, imaging data, tomography, and finance, as well as others. High-dimensional data present a challenge to traditional statistical techniques. In traditional statistical settings, models have a small number of features, chosen based on an assumption of what features may be relevant to the response of interest. In the high-dimensional setting, many of the techniques of traditional feature selection become computationally intractable, or does not yield unique solutions. Current research in modeling high-dimensional data is heavily focused on methods that screen the features before modeling; that is, methods that eliminate noise-features as a pre-modeling dimension reduction. Typically noise feature are identified by exploiting properties of independent random variables, thus the term "independence screening." There are methods for modeling high-dimensional data without feature screening first (e.g. LASSO or SCAD), but simulation studies show screen-first methods perform better as dimensionality increases. Many proposals for independence screening exist, but in my literature review certain themes recurred: A) The assumption of sparsity: that all the useful information in the data is actually contained in a small fraction of the features (the "active features"), the rest being essentially random noise (the "inactive" features). B) In many newer methods, initial dimension reduction by feature screening reduces the problem from the high-dimensional case to a classical case; feature selection then proceeds by a classical method. C) In the initial screening, removal of features independent of the response is highly desirable, as such features literally give no information about the response. D) For the initial screening, some statistic is applied pairwise to each feature in combination with the response; the specific statistic chosen so that in the case that the two random variables are independent, a specific known value is expected for the statistic. E) Features are ranked by the absolute difference between the calculated statistic and the expected value of that statistic in the independent case, i.e. features that are most different from the independent case are most preferred. F) Proof is typically offered that, asymptotically, the method retains the true active features with probability approaching one. G) Where possible, an iterative version of the process is explored, as iterative versions do much better at identifying features that are active in their interactions, but not active individually.
13

Randomization test and correlation effects in high dimensional data

Wang, Xiaofei January 1900 (has links)
Master of Science / Department of Statistics / Gary Gadbury / High-dimensional data (HDD) have been encountered in many fields and are characterized by a “large p, small n” paradigm that arises in genomic, lipidomic, and proteomic studies. This report used a simulation study that employed basic block diagonal covariance matrices to generate correlated HDD. Quantities of interests in such data are, among others, the number of ‘significant’ discoveries. This number can be highly variable when data are correlated. This project compared randomization tests versus usual t-tests for testing of significant effects across two treatment conditions. Of interest was whether the variance of the number of discoveries is better controlled in a randomization setting versus a t-test. The results showed that the randomization tests produced results similar to that of t-tests.
14

Penalised regression for high-dimensional data : an empirical investigation and improvements via ensemble learning

Wang, Fan January 2019 (has links)
In a wide range of applications, datasets are generated for which the number of variables p exceeds the sample size n. Penalised likelihood methods are widely used to tackle regression problems in these high-dimensional settings. In this thesis, we carry out an extensive empirical comparison of the performance of popular penalised regression methods in high-dimensional settings and propose new methodology that uses ensemble learning to enhance the performance of these methods. The relative efficacy of different penalised regression methods in finite-sample settings remains incompletely understood. Through a large-scale simulation study, consisting of more than 1,800 data-generating scenarios, we systematically consider the influence of various factors (for example, sample size and sparsity) on method performance. We focus on three related goals --- prediction, variable selection and variable ranking --- and consider six widely used methods. The results are supported by a semi-synthetic data example. Our empirical results complement existing theory and provide a resource to compare performance across a range of settings and metrics. We then propose a new ensemble learning approach for improving the performance of penalised regression methods, called STructural RANDomised Selection (STRANDS). The approach, that builds and improves upon the Random Lasso method, consists of two steps. In both steps, we reduce dimensionality by repeated subsampling of variables. We apply a penalised regression method to each subsampled dataset and average the results. In the first step, subsampling is informed by variable correlation structure, and in the second step, by variable importance measures from the first step. STRANDS can be used with any sparse penalised regression approach as the ``base learner''. In simulations, we show that STRANDS typically improves upon its base learner, and demonstrate that taking account of the correlation structure in the first step can help to improve the efficiency with which the model space may be explored. We propose another ensemble learning method to improve the prediction performance of Ridge Regression in sparse settings. Specifically, we combine Bayesian Ridge Regression with a probabilistic forward selection procedure, where inclusion of a variable at each stage is probabilistically determined by a Bayes factor. We compare the prediction performance of the proposed method to penalised regression methods using simulated data.
15

Statistical Dependence in Imputed High-Dimensional Data for a Colorectal Cancer Study

Suyundikov, Anvar 01 May 2015 (has links)
The main purpose of this dissertation was to examine the statistical dependence of imputed microRNA (miRNA) data in a colorectal cancer study. The dissertation addressed three related statistical issues that were raised by this study. the first statistical issue was motivated by the fact that miRNA expression was measured in paired tumor-normal samples of hundreds of patients, but data for many normal samples were missing due to lack of tissue availability. We compared the precision and power performance of several imputation methods, and drew attention to the statistical dependence induced by K-Nearest Neighbors (KNN) imputation. The second statistical issue was raised by the necessity to address the bimodality of distributions of miRNA data along with the imputation-induced dependency among subjects. We proposed and compared the performance of three nonparametric methods to identify the dierentially expressed miRNAs in the paired tumor-normal data while accounting for the imputation-induced dependence. The third statistical issue was related to the development of a normalization method for miRNA data that would reduce not only technical variation but also the variation caused by the characteristics of subjects, while maintaining the true biological dierences between arrays.
16

Hypothesis Testing for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits

January 2018 (has links)
acase@tulane.edu / Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in the extreme phenotypic samples within the top and bottom percentiles, EPS can boost the study power compared with the random sampling with the same sample size. The existing statistical methods for EPS data test the variants/regions individually. However, many disorders are caused by multiple genetic factors. Therefore, it is critical to simultaneously model the effects of genetic factors, which may increase the power of current genetic studies and identify novel disease-associated genetic factors in EPS. The challenge of the simultaneous analysis of genetic data is that the number (p ~10,000) of genetic factors is typically greater than the sample size (n ~1,000) in a single study. The standard linear model would be inappropriate for this p>n problem due to the rank deficiency of the design matrix. An alternative solution is to apply a penalized regression method – the least absolute shrinkage and selection operator (LASSO). LASSO can deal with this high-dimensional (p>n) problem by forcing certain regression coefficients to be zero. Although the application of LASSO in genetic studies under random sampling has been widely studied, its statistical inference and testing under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function to investigate the genetic associations, including the gene expression and rare variant analyses. The comprehensive simulation shows EPS-LASSO outperforms existing methods with superior power when the effects are large and stable type I error and FDR control. Together with the real data analysis of genetic study for obesity, our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. / 1 / Chao Xu
17

A clustering scheme for large high-dimensional document datasets

Chen, Jing-wen 09 August 2007 (has links)
Peoples pay more and more attention on document clustering methods. Because of the high dimension and the large number of data, clustering methods usually need a lot of time to calculate. We propose a scheme to make the clustering algorithm much faster then original. We partition the whole dataset to several parts. First, use one of these parts for clustering. Then according to the label after clustering, we reduce the number of features by a certain ratio. Add another part of data, convert these data to lower dimension and cluster them again. Repeat this until all partitions are used. According to the experimental result, this scheme may run twice faster then the original clustering method.
18

Kernel Machine Methods for Risk Prediction with High Dimensional Data

Sinnott, Jennifer Anne 22 October 2012 (has links)
Understanding the relationship between genomic markers and complex disease could have a profound impact on medicine, but the large number of potential markers can make it hard to differentiate true biological signal from noise and false positive associations. A standard approach for relating genetic markers to complex disease is to test each marker for its association with disease outcome by comparing disease cases to healthy controls. It would be cost-effective to use control groups across studies of many different diseases; however, this can be problematic when the controls are genotyped on a platform different from the one used for cases. Since different platforms genotype different SNPs, imputation is needed to provide full genomic coverage, but introduces differential measurement error. In Chapter 1, we consider the effects of this differential error on association tests. We quantify the inflation in Type I Error by comparing two healthy control groups drawn from the same cohort study but genotyped on different platforms, and assess several methods for mitigating this error. Analyzing genomic data one marker at a time can effectively identify associations, but the resulting lists of significant SNPs or differentially expressed genes can be hard to interpret. Integrating prior biological knowledge into risk prediction with such data by grouping genomic features into pathways reduces the dimensionality of the problem and could improve models by making them more biologically grounded and interpretable. The kernel machine framework has been proposed to model pathway effects because it allows nonlinear associations between the genes in a pathway and disease risk. In Chapter 2, we propose kernel machine regression under the accelerated failure time model. We derive a pseudo-score statistic for testing and a risk score for prediction using genes in a single pathway. We propose omnibus procedures that alleviate the need to prespecify the kernel and allow the data to drive the complexity of the resulting model. In Chapter 3, we extend methods for risk prediction using a single pathway to methods for risk prediction model using multiple pathways using a multiple kernel learning approach to select important pathways and efficiently combine information across pathways.
19

Functional approximation methods for solving stochastic control problems in finance

Yang, Chunyu, 1979- 02 December 2010 (has links)
I develop a numerical method that combines functional approximations and dynamic programming to solve high-dimensional discrete-time stochastic control problems under general constraints. The method relies on three building blocks: first, a quasi-random grid and the radial basis function method are used to discretize and interpolate the high-dimensional state space; second, to incorporate constraints, the method of Lagrange multipliers is applied to obtain the first order optimality conditions; third, the conditional expectation of the value function is approximated by a second order polynomial basis, estimated using ordinary least squares regressions. To reduce the approximation error, I introduce the test region iterative contraction (TRIC) method to shrink the approximation region around the optimal solution. I apply the method to two Finance applications: a) dynamic portfolio choice with constraints, a continuous control problem; b) dynamic portfolio choice with capital gain taxation, a high-dimensional singular control problem. / text
20

Statistical Methods to Enhance Clinical Prediction with High-Dimensional Data and Ordinal Response

Leha, Andreas 25 March 2015 (has links)
Der technologische Fortschritt ermöglicht es heute, die moleculare Konfiguration einzelner Zellen oder ganzer Gewebeproben zu untersuchen. Solche in großen Mengen produzierten hochdimensionalen Omics-Daten aus der Molekularbiologie lassen sich zu immer niedrigeren Kosten erzeugen und werden so immer häufiger auch in klinischen Fragestellungen eingesetzt. Personalisierte Diagnose oder auch die Vorhersage eines Behandlungserfolges auf der Basis solcher Hochdurchsatzdaten stellen eine moderne Anwendung von Techniken aus dem maschinellen Lernen dar. In der Praxis werden klinische Parameter, wie etwa der Gesundheitszustand oder die Nebenwirkungen einer Therapie, häufig auf einer ordinalen Skala erhoben (beispielsweise gut, normal, schlecht). Es ist verbreitet, Klassifikationsproblme mit ordinal skaliertem Endpunkt wie generelle Mehrklassenproblme zu behandeln und somit die Information, die in der Ordnung zwischen den Klassen enthalten ist, zu ignorieren. Allerdings kann das Vernachlässigen dieser Information zu einer verminderten Klassifikationsgüte führen oder sogar eine ungünstige ungeordnete Klassifikation erzeugen. Klassische Ansätze, einen ordinal skalierten Endpunkt direkt zu modellieren, wie beispielsweise mit einem kumulativen Linkmodell, lassen sich typischerweise nicht auf hochdimensionale Daten anwenden. Wir präsentieren in dieser Arbeit hierarchical twoing (hi2) als einen Algorithmus für die Klassifikation hochdimensionler Daten in ordinal Skalierte Kategorien. hi2 nutzt die Mächtigkeit der sehr gut verstandenen binären Klassifikation, um auch in ordinale Kategorien zu klassifizieren. Eine Opensource-Implementierung von hi2 ist online verfügbar. In einer Vergleichsstudie zur Klassifikation von echten wie von simulierten Daten mit ordinalem Endpunkt produzieren etablierte Methoden, die speziell für geordnete Kategorien entworfen wurden, nicht generell bessere Ergebnisse als state-of-the-art nicht-ordinale Klassifikatoren. Die Fähigkeit eines Algorithmus, mit hochdimensionalen Daten umzugehen, dominiert die Klassifikationsleisting. Wir zeigen, dass unser Algorithmus hi2 konsistent gute Ergebnisse erzielt und in vielen Fällen besser abschneidet als die anderen Methoden.

Page generated in 0.0828 seconds