• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 153
  • 83
  • 73
  • 40
  • 29
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 1289
  • 1289
  • 213
  • 210
  • 164
  • 156
  • 152
  • 101
  • 94
  • 90
  • 89
  • 81
  • 80
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

The chemical reactor for the decomposition of sulphuric acid for the hybrid sulphur process / Martin-David Coetzee

Coetzee, Martin-David January 2008 (has links)
The utilisation of alternate sources of energy has reached critical levels due to the constantly growing demand for energy and the diminishing of fossil fuels. The production of hydrogen through the Hybrid Sulphur process is a possible alternative that may contribute towards alleviating the pressure on the world's energy resources. The two-step thermochemical cycle for decomposing water into hydrogen and oxygen offers the potential to obtain acceptable thermal efficiencies, while still using common and inexpensive chemicals. The process mainly makes use of two unit process operations: an electrolyser and a chemical decomposition reactor. This research project focuses on the concept design of the decomposition reactor operated adiabatically as a multi-stage reactor system with inter-stage heating, in order to simplify the reactor design. This approach allows for the independent evaluation of the reaction kinetics and the heat transfer mechanism. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
252

CFD simulation of nuclear graphite oxidation / P. Sukdeo.

Sukdeo, Preeyanand January 2010 (has links)
This study investigates the development of a strategy to simulate nuclear graphite oxidation with Computational Fluid Dynamics (CFD) to determine an estimate of graphite lost. The task was achieved by comparing the results of the CFD approach with a number of different experiments. For molecular diffusion, simulated results were compared to analytical solutions. Mass flow rates under conditions of natural convection were sourced from the 2002 NACOK experiment. Experimental data from the KAIST facility were sourced for the basic oxidation of graphite in a controlled environment. Tests included the reactions of carbon with oxygen and with carbon dioxide. Finally, the tests at NACOK from 2004 and 2005 were chosen for comparison for the simulation of oxidation. The 2005 test considered two reacting pebble bed regions at different temperatures. The 2004 test included multiple detailed structural graphite. Comparison of results indicated that the phenomenon of diffusion can be correctly simulated. The general trends of the mass flow rates under conditions of natural convection were obtained. Surface reaction rates were defined with user functions in Fluent. Good comparisons of the simulated and the KAIST experimental results were obtained. For the 2005 NACOK comparison, the pebble bed regions were simulated with a porous medium approach. Results showed that correct trends and areas of oxidation were estimated. The 2004 tests were with a combination of a porous medium and surface reaction approaches. More detailed oxidation experimental data would possibly improve the accuracy of the results. This research has shown that the CFD approach developed in the present study can identify areas of maximum oxidation although the accuracy needs to be improved. Both the porous and detailed surface reaction approaches produced consistent results. The limitations of the approach were discussed. These included transient phenomena which were estimated with steady state simulations, and the effects of change in geometry were not considered. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2010.
253

Deformation behaviour of Cu-Cr in-situ composite

Lee, Kok Loong January 2004 (has links)
With the increasing requirements for higher strength materials with high electrical conductivity, a lot of interest has been paid to develop Cu-based composites in the last 25 years. These composites have superior tensile strength, combined with good electrical conductivity, to that exhibited by pure Cu and conventional Cu alloys. To date, much of the research carried out on this composite has focused on the mechanical and electrical properties of the as processed material. However, there is a basic lack of understanding of the way in which the properties may change or degrade during service. Without this knowledge, these composites cannot be fully and safely exploited. Thus the objective of this study was to investigate the thermo-mechanical behaviour of a Cu-Cr composite, and the nature and extent of any damage mechanisms occurring within the composite over a wide range of experimental conditions. Neutron diffraction was used to investigate the deformation behaviour of the individual phases in the composite and their interaction through elastic and plastic loading at room temperature. For the composite, a fairly good agreement was observed in the phase strains predicted by the Eshelby theory and measured by neutron diffraction. In-situ tensile tests in the SEM were also performed to study the damage mechanism of the composite. Tensile and creep tests were carried out in air and in vacuum over a wide range of temperatures. To provide data for comparison with the composite material, pure Cu specimens were tested whenever possible. Creep resistance increases significantly with the introduction of Cr fibres into Cu. The higher creep rate of the composite in air than in vacuum is due to the gradual decrease of the cross-sectional area of the matrix due to increasing thickness of the oxide layer. Damage characteristics and distributions were found to be similar during tensile and creep testing.
254

Enhancements of a Combustion Vessel to Determine Laminar Flame Speeds of Hydrocarbon Blends with Helium Dilution at Elevated Temperatures and Pressures

Plichta, Drew 03 October 2013 (has links)
Fuel flexibility in gas turbines is of particular importance because of the main fuel source, natural gas. Blends of methane, ethane, and propane are big constituents in natural gas and consequently are of particular interest. With this level of importance comes the need for baseline data such as laminar flame speed of said fuels. While flame speeds at standard temperature and pressure have been extensively studied in the literature, experimental data at turbine-like conditions are still lacking currently. This thesis discusses the theory behind laminar flames; new data acquisition techniques; temperature and pressure capability improvements; measured flame speeds; and a discussion of the results including stability analysis. The measured flame speeds were those of methane, ethane, and propane fuel blends, as well as pure methane, at an elevated pressure of 5 atm and temperatures of 298 and 473 K, using a constant-volume, cylindrical combustion vessel. The current Aramco mechanism developed in conjunction with National University of Ireland Galway compared favorably with the data, while the literature data showed discrepancies at stoichiometric to rich conditions. An in-depth flame speed uncertainty analysis yielded a wide range of values from 0.5 cm/s to 21.5 cm/s. It is well known that high-pressure experiments develop flame instabilities when air is used as the oxidizer. In this study, the hydrodynamic instabilities were restrained by using a high diluent-to-oxygen ratio. The thermal-diffusive instabilities were inhibited by using helium as the diluent. To characterize this flame stability, the Markstein length and Lewis number were calculated for the presented conditions. The resultant positive Markstein lengths showed a low propensity of flame speed to flame stretch, while the larger-than-unity Lewis numbers showed the relatively higher diffusivity of helium to that of nitrogen.
255

Magnetic field resistivity of superconducting bismuth oxides.

Krause, Thomas Walter. Datars, W.R. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1992. / Source: Dissertation Abstracts International, Volume: 54-12, Section: B, page: 6278. Adviser: W. R. Datars.
256

The optical properties of high-T(c) superconductors grown by pulsed laser deposition.

Hughes, Robert Alan. Timusk, T. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1993. / Source: Dissertation Abstracts International, Volume: 54-12, Section: B, page: 6277. Adviser: T. Timusk.
257

Anisotropy in the electrical, magnetic and optical properties of lead(2) strontium(2) R copper(3) oxygen(8).

Reedyk, Maureen. Timusk, T. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1993. / Source: Dissertation Abstracts International, Volume: 54-12, Section: B, page: 6281. Adviser: T. Timusk.
258

Picosecond photoresponse of high critical temperature superconductor thin films.

Hegmann, Frank Anthony. Preston, John S. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 56-12, Section: B, page: 6833. Adviser: J. S. Preston.
259

Influence of oxygen partial pressure and temperature on the formation and stability of 110K phase in the bismuth lead strontium calcium copper oxygen superconducting system.

Zhu, Wen. Nicholson, Patrick S. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 56-12, Section: B, page: 7001. Adviser: P. S. Nicholson.
260

Electromagnetic properties of 2-dimensional D(x(2)-y(2)) symmetry superconductors.

Arberg, Peter Neil. Carbotte,J.P. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1995. / Source: Dissertation Abstracts International, Volume: 57-03, Section: B, page: 1866. Adviser: J. P. Carbotte.

Page generated in 0.0494 seconds