Spelling suggestions: "subject:"hilberttransformation"" "subject:"helmerttransformation""
1 |
Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer RandwertaufgabenMartin, Frank 25 February 2011 (has links) (PDF)
In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.
|
2 |
Analytische und numerische Verfahren zur Berechnung der Hilbert-Transformation und zur Lösung funktionentheoretischer RandwertaufgabenMartin, Frank 17 December 2010 (has links)
In der Arbeit werden effektive Verfahren zur Auswertung der Hilbert-Transformation entwickelt und zur Lösung nichtlinearer Randwertaufgaben der Funktionentheorie eingesetzt. Die Verwendung polynomialer Spline-Wavelets und geeignet modifizierter Wavelet-Algorithmen ermöglichen die schnelle Berechnung auf gleichmäßigen und ungleichmäßigen Gittern sowie deren automatische Anpassung an lokale Besonderheiten der Lösung. Die detaillierte Untersuchung des Zusammenhangs zwischen der Glattheit, der Größe des Trägers des Splines, der Anzahl verschwindender Momente und des asymptotischen Verhaltens der Hilbert-Transformierten erlaubt die Anpassung der Parameter des Verfahrens in Bezug auf Genauigkeit und Effektivität. Im zweiten Teil der Arbeit werden verschiedene Algorithmen zur Lösung von Riemann-Hilbert Probleme vorgeschlagen und deren Konvergenzverhalten untersucht. Die theoretischen Ergebnisse werden durch numerische Experimente bestätigt.
|
3 |
Stability assessment of nonlinear systems using the lyapunov exponentBest, Eric A. January 2003 (has links)
No description available.
|
4 |
Numerical study of conforming space-time methods for Maxwell’s equationsHauser, Julia I. M., Zank, Marco 13 December 2024 (has links)
Time-dependent Maxwell’s equations govern electromagnetics. Under certain conditions, we can rewrite these equations into a partial differential equation of second order, which in this case is the vectorial wave equation. For the vectorial wave equation, we examine numerical schemes and their challenges. For this purpose, we consider a space-time variational setting, that is, time is just another spatial dimension. More specifically, we apply integration by parts in time as well as in space, leading to a space-time variational formulation with different trial and test spaces. Conforming discretizations of tensor-product type result in a Galerkin–Petrov finite element method that requires a CFL condition for stability which we study. To overcome the CFL condition, we use a Hilbert-type transformation that leads to a variational formulation with equal trial and test spaces. Conforming space-time discretizations result in a new Galerkin–Bubnov finite element method that is unconditionally stable. In numerical examples, we demonstrate the effectiveness of this Galerkin–Bubnov finite element method. Furthermore, we investigate different projections of the right-hand side and their influence on the convergence rates. This paper is the first step toward a more stable computation and a better understanding of vectorial wave equations in a conforming space-time approach.
|
Page generated in 0.1798 seconds