• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Curvatura de Lie das hipersuperfícies de Dupin / Lie curvature of Dupin hypersurfaces

VITOR, Erivelton Paulo 28 March 2008 (has links)
Made available in DSpace on 2014-07-29T16:02:23Z (GMT). No. of bitstreams: 1 DISSERTACAO.pdf: 293631 bytes, checksum: 5c813b219dd91ac79277b83be339ffcd (MD5) Previous issue date: 2008-03-28 / In this work we study some results from the article of Tomas E. Cecil, On the Lie curvature of Dupin hypersurfaces [4]. We study the basic concepts of Lie sphere geometry, which given the framework for the study of Dupin hypersurfaces in the Lie sphere geometry. We construct example of a non-compact proper Dupin hypersurface immersed in Sn on which the Lie curvature &#936; = 1/2 which is not Lie equivalent to an open subset of an isoparametric hypersurface in Sn. We also produce example on which Lie curvature &#936; has a constant value c, 0 < c < 1. / Neste trabalho estudamos alguns resultados do artigo de Tomas E. Cecil, On the Lie curvature of Dupin hypersurfaces [4]. Estudamos os conceitos básicos da geometria de Lie, que fornece as ferramentas necessárias para o estudo das hipersuperfícies de Dupin na geometria de Lie. Construímos exemplos de uma hipersuperfície de Dupin própria não compacta mergulhada em Sn, com curvatura de Lie &#936; = 1/2 e que não é Lie equivalente a um subconjunto aberto de uma hipersuperfície isoparamétrica em Sn. Também construímos exemplos onde a curvatura de Lie &#936; tem valor constante c, 0 < c < 1.

Page generated in 0.0796 seconds