• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Histone H3 lysine 56 acetylation and deacetylation pathways as targets for novel antifungal therapies in Candida albicans

Ghugari, Rahul 06 1900 (has links)
No description available.
2

Rôle de la chromatine dans la modulation de la réponse aux dommages à l’ADN en présence de stress réplicatif

Ricard, Étienne 09 1900 (has links)
Les sirtuines sont une famille conservée de déacétylases NAD+-dépendantes qui sont impliquées dans divers processus. Les humains possèdent 7 sirtuines (SIRT1-7) qui jouent un rôle dans plusieurs voies cellulaires, tandis que la levure Saccharomyces cerevisiae possède 5 membres (Sir2, Hst1-4) qui influencent plusieurs voies comme le cycle cellulaire ou le vieillissement. Une absence d’activité des sirtuines mène toutefois à des défauts de croissance, une thermosensibilité et l’apparition de dommages spontanés à l’ADN par des mécanismes mal élucidés. Pour mieux caractériser ce phénomène, ce mémoire met en lumière certains résultats venant d’un crible chimiogénétique réalisé par traitement au nicotinamide (NAM), un pan-inhibiteur des sirtuines. Nos résultats indiquent que le NAM entraîne chez la levure Saccharomyces cerevisiae une forte activation des voies de réponses aux dommages à l’ADN, et que les défauts de croissance sont principalement dus à l’hyperacétylation de la lysine 56 de l’histone H3 (H3K56), une modification post-traductionnelle qui est renversée par les sirtuines Hst3 et Hst4. Lors d’hyperacétylation de H3K56, la protéine Slx4 et le complexe PP4 sont requis pour la croissance de la levure en modulant les niveaux d’activation de la kinase Rad53 lors de la RDA. Également, certains résultats préliminaires inclus dans ce mémoire mettent en évidence un rôle de l’activité des sirtuines dans la régulation de la recombinaison homologue, l’une des voies de réparation de l’ADN. Ensemble, nos résultats suggèrent que la déacétylation des histones par les sirtuines permet de moduler la réponse aux dommages à l’ADN en présence de stress réplicatif. / Sirtuins are a conserved family of NAD+-dependent deacetylases that are involved in various processes. Humans have seven sirtuins (SIRT1-7) and play a role in several cellular pathways, while the budding yeast Saccharomyces cerevisiae has 5 members (Sir2, Hst1-4) and influence several pathways, such as the cell cycle or aging. Lack of sirtuin activity however leads to growth defects, thermosensitivity and spontaneous DNA damage by poorly understood mechanisms. To further characterize this phenomenon, this thesis highlights results obtained from a chemogenetic screen realized by treatment with nicotinamide (NAM), a pan-inhibitor of all sirtuins. Our results indicate that NAM causes strong activation of DNA damage-induced signaling in budding yeast Saccharomyces cerevisiae, and that growth defects are mainly due to histone H3 lysine 56 (H3K56) hyperacetylation, a post-translational modification reversed by sirtuins Hst3 and Hst4. During H3K56 hyperacetylation, the Slx4 protein and PP4 complex are both required for yeast growth by modulating the activation levels of Rad53 kinase during the DDR. Also, preliminary results included in this thesis highlight that proper regulation of homologous recombination, one of DNA repair pathways, is essential for growth in the presence of NAM-induced sirtuin inhibition. Together, our results suggest that chromosome-wide histone deacetylation by sirtuins can modulate DNA damage response in presence of replicative stress.
3

Role of Histone H3 Lysine 56 Acetylation in the Response to Replicative stress

Nersesian, Jeanet 01 1900 (has links)
Chez la levure Saccharomyces cerevisiae, l’acétylation de l’histone H3 sur la Lysine 56 (H3K56ac) a lieu sur toutes les histones H3 nouvellement synthétisées qui sont déposées derrière les fourches de réplication. L’acétylation de H3K56 joue un rôle primordial dans l’assemblage de l’ADN lors la réplication et la réparation. L’acétylation de H3K56 joue également un rôle important dans la stabilité génomique et la stabilisation des fourches de réplication bloquée. En effet, les cellules dépourvues de H3K56ac sont sensibles au méthane sulfonate de méthyle (MMS) et à d’autres agents génotoxiques qui causent du stress réplicatif. Notre projet visait à investiguer les liens entre la protéine du réplisome Ctf4 et l’acétyltransférase d’histone Rtt109. Dans un premier lieu, la délétion de CTF4 a partiellement contré la sensibilité des cellules rtt109Δ au MMS. Notre analyse génétique a aussi montré que Ctf4, Rtt109, et le complexe Rtt101-Mms1-Mms22 agissent dans la même voie de réponse face à un stress réplicative. Nos résultats montrent que les cellules ctf4Δ et rtt109Δ présentent des foyers intenses du complexe de liaison à l'ADN simple-brin RPA en réponse au stress réplicatif, suggérant la formation excessive de régions d'ADN simple-brin aux fourches de réplication bloquées, ce qui conduit à une hyper activation des points de contrôle des dommages à l'ADN. Ces mutants présentent des ponts anaphase et des foyers persistants des protéines de recombinaison homologues Rad51 et Rad52 en réponse aux génotoxines, suggérant ainsi que la structure anormale des réplisomes bloqués peut compromettre leur récupération. Nos résultats indiquent également que la délétion des gènes de la RH (RAD51, RAD52, RAD54, RAD55 et MUS81) avec ctf4Δ et rtt109Δ respectivement, engendre une sensibilité synergique au MMS, suggérant que les cellules qui sont déficientes en H3K56 acétylation utilisent la RH pour réparer les dommages causés suite à un stress réplicatif. En conclusion, nos résultats suggèrent que les cellules déficientes en H3K56ac présentent des défauts de RH en réponse aux dommages à l’ADN induits par le MMS durant la phase S. / In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs on all newly synthesized histones H3 that are deposited behind DNA replication forks. H3K56ac plays critical role in chromatin assembly during DNA replication and repair. H3K56ac is also required for genome stability and stabilization of stalled replication fork. Cells lacking H3K56ac are sensitive to methyl methane sulfonate and other drugs that cause replicative stress. In this thesis, we investigated the links between the replisome protein Ctf4 and the H3K56 acetyltransferase Rtt109. Deletion of CTF4 partially rescued the sensitivity of rtt109Δ cells to methyl methane sulfonate. Genetic analyses also showed that Ctf4, Rtt109, and the Rtt101-Mms1-Mms22 complex act in the same pathway to response to replicative stress. ctf4Δ and rtt109Δ cells displayed intense foci of the single-stranded DNA binding complex RPA during replicative stress, suggesting formation of excess single-stranded DNA regions at stalled replication forks, leading to hyper activation of DNA damage checkpoints. These mutants accumulated anaphase bridges and persistent foci of the homologous recombination proteins Rad51 and Rad52 in response to genotoxins, suggesting that abnormal DNA structure formed at stalled replisome may compromise their recovery. Deletion of HR genes (RAD51, RAD52, RAD54, RAD55 and MUS81) together with ctf4Δ and rtt109Δ presents synergistic sensitivity to MMS, suggesting that H3K56ac deficient cells use HR to repair the damages caused by replicative stress. Overall our results demonstrate that H3K56ac deficient cells cannot recover MMS- induced damages because HR is compromised in these mutants.

Page generated in 0.1278 seconds