• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of N1/N2 Family Histone Chaperones: Hif1p and NASP

Huanyu, Wang 27 September 2010 (has links)
No description available.
2

Characterizing the interactions between mouse nucleoplasmin and chromosomal proteins

Ellard, Katherine 20 December 2012 (has links)
The family of Nucleoplasmin (NPM) proteins play an important role in a number of chromatin remodelling processes. The first NPM protein discovered in the eggs and oocytes of Xenopus laevis was NPM2, a tissue specific histone chaperone. In Xenopus, NPM2 has been linked to paternal chromatin decondensation following fertilization through the removal of sperm proteins, nucleosome assembly through the storage and addition of H2A-H2B dimers and apoptosis. In mammals, NPM2 correlates strongly with nucleolus-like bodies, and has been suggested by various groups to differ in its roles when compared to the X. laevis homologue. However, the exact roles of NPM2 in mammals remain to be fully elucidated. In this dissertation, attempts are made to determine the physical interaction sites between mouse NPM2 and core histone proteins, H2A, H2B, H3 and H4, as well as physical interactions between mouse NPM2 and protamines (sperm proteins) P1 and P2. Interaction sites between mouse NPM2 and various chromosomal proteins were investigated using a number of different techniques. First, NPM2: chromosomal protein binding assays were attempted to determine the ratio of NPM2 to both core histones and protamines. When visualized through 12% Native gels, NPM2 was determined to interact with histone octamers at a molar ratio of 1-1.5 mol NPM2/mol histone octamer. Mouse sperm protamines were determined to form complexes with mouse NPM2 at a molar ratio of 2.5 mol protamine/mol NPM2 (or mol protamine/0.4 mol NPM2). Analytical Ultracentrifuge (AUC) analysis was conducted on NPM2 and chromosomal proteins separately and in complex formation. Although determining that isolated, full length mouse NPM2 exists in a pentamer form, attempts with AUC were unsuccessful in determining specific NPM2:chromosomal protein binding affinity and complex formation. Specific physical interaction sites between NPM2 and chromosomal proteins were investigated using Cross Linking Mass Spectrometry. Here, a number of new interaction sites as well as sites previously identified by other groups were determined. In combination, our results present likely interaction sites between NPM2 and chromosomal proteins and represent an interesting point of reference for future work. / Graduate
3

Mécanisme épigénétique impliqué dans la déposition de CENP-A aux centromeres / Epigenetic mechanism of CENP-A loading to centromeres

Shuaib, Muhammad 08 June 2012 (has links)
La ségrégation fidèle des chromosomes est dirigée par le centromère, un locus chromosomique spécialisé qui est requis pour l’assemblage des kinetochores actifs. Les centromères sont marqués épigénétiquement par la présence d’un nucléosome unique qui contient un variant centromérique de l’histone H3 appelé Centromere protein A (CENP-A). Une question fondamentale est comment CENP-A est spécifiquement déposé aux centromères. L’objectif de ma thèse a été d’identifier les facteurs spécifiques de la déposition de CENP-A. Pour identifier les facteurs spécifiques impliqués dans la déposition de CENP-A aux centromères, j’ai utilisé la méthode de purification TAP-TAG à partir d’une fraction nucléaire soluble de cellules HeLa exprimant stablement une copie ectopique de CENP-A (e-CENP-A). J’ai ainsi pu identifié la protéine Holliday Junction Recognition protein (HJURP). En utilisant un siRNA spécifique de HJURP, j’ai montré que la localisation et la déposition de CENP-A étaient fortement affectées. La protéine recombinante HJURP lie de manière stoechiométrique le tétramère CENP-A/H4 mais il ne lie pas le tétramère H3/H4. La liaison se fait grâce à un petit domaine conservé en position N-terminal de HJURP, dénommé CBD (CENP-A binding domain). De plus, j’ai pu mettre en évidence in vitro que HJURP facilitait la déposition du tétramère CENP-A/H4 sur de l’ADN satellite. L’ensemble de mes résultats démontre très clairement que HJURP est la principale chaperone responsable de la déposition de CENP-A aux centromères. / Centromere is a specialized chromosomal locus, where kinetochore assembles, which is required for correct chromosome segregation during cell division. In higher eukaryotes, centromere specification is independent of the DNA sequence and is determined epigenetically by the presence of a unique nucleosome that contains a histone H3 variant, called CENP-A. A fundamental question in centromere biology is that how CENP-A is specifically delivered to and maintained on centromeres. The aim of my thesis was to identify specific chaperone in human, responsible for CENP-A loading to centromeres, by using biochemical and proteomic strategies. To identify CENP-A deposition machinery, I purified the prenucleosomal CENP-A complex from HeLa cells stably expressing epitope tagged CENP-A. By mass spectrometry analysis of proteins present in CENP-A and H3.1 complex, I found HJURP uniquely in CENP-A prenucleosomal complex. Down regulation of HJURP by specific siRNA strongly diminished centromeric localization of CENP-A. Bacteriallyexpressed HJURP specifically binds to the CATD domain of CENP-A, via a highly conserved Nterminal domain, called CBD. Finally, I showed that HJURP is able to facilitate the efficient deposition of CENP-A/H4 tetramer on naked DNA. Taken together, my data demonstrate that HJURP is a key chaperone responsible for the targeting and deposition of newly synthesized CENPA at centromeres.
4

Structure-Function Analysis of the Conserved Histone Chaperone Spt6

Loeliger, Erin Michelle 06 June 2014 (has links)
Chromatin structure is crucial to regulate access to the genome for processes such as a transcription, recombination, DNA repair, and DNA replication. Spt6, a key factor involved in regulating chromatin structure, is conserved throughout eukaryotes. Spt6 has been shown to function in many aspects of gene expression, including nucleosome assembly, transcription initiation and elongation, and mRNA processing and export. In addition, Spt6 has several conserved domains; however, little is known about their functions. I have performed a structure-function analysis of Spt6 using three separate approaches. First, I employed a random insertion mutagenesis that has identified sixty-seven mutants. While these mutants did not provide information regarding known domains, some have phenotypes that may prove useful for future study. Second, in a collaborative project with Romier lab, I studied the functional roles of the Spt6 SH2 domains. I have shown that deletion of the region of Spt6 encoding the SH2 domains causes severe mutant phenotypes without affecting Spt6 protein levels, demonstrating the importance of the SH2 domains of Spt6. Third, in an additional collaboration with the Romier lab, I showed that mutations that alter the region of Spt6 that interacts with the conserved transcription factor Spn1 impair Spt6 functions in vivo. Overall, this multi-pronged structure-function analysis of Spt6 has provided new insights into the tandem SH2 domains of Spt6, the Spt6-Spn1 interaction, and the uses and limitations of insertion mutagenesis. In addition, I have attempted to explore a possible role for Spt6 in transcription-associated mutagenesis. After employing several types of in vivo assays, I conclude that a possible role for Spt6 in transcription-associated mutagenesis is uncertain, as the results (with respect to a role for Spt6) reproducibly vary depending on the assay used. Thus, understanding this aspect of Spt6 biology awaits better assays and understanding of transcription-associated mutagenesis. Overall, the work in this dissertation will serve to further elucidate the mechanisms of Spt6 in chromatin regulation, transcription, and DNA damage repair.
5

Chromatin regulation by histone chaperone Asf1

Minard, Laura Unknown Date
No description available.
6

Identification et caractérisation de HIRIP3 comme nouveau chaperon d'histone H2A / Identification and characterization of HIRIP3 as a novel histone H2A chaperone

Ignatyeva, Maria 31 May 2017 (has links)
Le génome des cellules eucaryotes est empaqueté dans la chromatine, dont l’établissement et la maintenance nécessitent des processus d’assemblage et de remodelage. Ce travail de thèse a été consacré à la caractérisation de deux facteurs de la machinerie d’assemblage de la chromatine. Le premier facteur étudié dans ce travail était HIRIP3, un homologue mammifère de la levure H2A.Z chaperon Chz1. Nous voulions vérifier si HIRIP3 est une chaperon d'histone par elle-même. Pour commencer, nous avons décrit l'interaction de HIRIP3 avec les histones in vivo. Ensuite, nous avons étudié la spécificité structurale de cette interaction in vitro. Nous avons caractérisé HIRIP3 comme une nouvelle chaperon d'histone H2A qui utilise le motif CHZ pour sa fonction. La deuxième partie de ce travail a été axée sur le complexe de remodelage de la chromatine SRCAP. Nous avons cherché à décoder son réseau d'interaction et à décrire ses sous-complexes. Nous avons reconstitué le complexe de base YL1, SRCAP, TIP49A, TIP49B et H2A.Z / H2B en utilisant le système d'expression chez baculovirus. Notre protocole nous a permis de purifier un complexe de base adapté aux futures études structurelles par microscopie cryo-électronique. / The genome of eukaryotic cells is packaged into chromatin, which establishment and maintenance require mechanisms of assembly and remodelling. This thesis work was dedicated to the characterization of two factors of chromatin assembly machinery. The first factor studied in this work was HIRIP3, a mammalian homologue of yeast H2A.Z chaperone Chz1. We aimed to test whether HIRIP3 is a histone chaperone by itself. At first, we established HIRIP3 interaction with histones in vivo. After then, we studied the structural specificity of this interaction in vitro. We have characterized HIRIP3 as a novel H2A histone chaperone that utilizes the CHZ motif for its function. The second part of this work was focused on SRCAP chromatin remodelling complex. We aimed to decipher its interaction network and to describe its sub-complexes. We have reconstituted YL1, SRCAP, TIP49A, TIP49B and H2A.Z/H2B core complex using baculovirus expression system. Our protocol allowed us to purify core complex suitable for future structural studies by cryo-electron microscopy.
7

Identification of Replication-Dependent and Replication-Independent Linker Histone Complexes

Zhang, Pei, Zhang January 2016 (has links)
No description available.
8

Etudes structurales sur l'assemblage du nucléosome / Structural studies of Nucleosome Assembly

Aguilar Gurrieri, Carmen 05 July 2013 (has links)
Au sein du noyau, l'ADN est organise en chromatine dont l'unité de base est le nucléosome. La structure de la chromatine est très dynamique, ce qui est nécessaire pour la plupart des opérations qui se produisent dans l'ADN telles que la réplication, la transcription, la réparation et la recombinaison. Le nucléosome est constitué de deux dimères H2A/H2B et deux dimères H3/H4 associés avec 147 paires de bases d'ADN. La protéine Nap1 est un chaperon d'histone H2A/H2B impliquée dans l'assemblage et démontage des nucléosomes. Nap1 protège les interactions non spécifiques entre l'ADN chargé négativement et les dimères H2A/H2B chargés positivement, afin de permettre la formation de la structure ordonnée des nucléosomes. Lors de l'assemblage des nucléosomes, les dimères d'histones H3/H4 sont déposés en premier lieu, suivi par le dépôt de dimères H2A/H2B. Lors du démontage du nucléosome, les dimères H2A/H2B sont retirés avant le retrait des dimères H3/H4. La determination de la structure du complexe Nap1-H2A/H2B pourra permettre une meilleure compréhension du processus d'assemblage du nucléosome. Dans cette étude, nous voulons comprendre comment le chaperon Nap1 cible spécifiquement les dimères d'histones H2A/H2B pour l'assemblage des nucléosomes. Notre objectif est de caractériser la structure et la fonction du complexe de Nap1-H2A/H2B. Ainsi nous nous sommes tout d'abord intéresse à la stoechiometrie de ce complexe. Nous avons trouvé qu'un dimère de Nap1 s'associe à un dimère H2A/H2B (Nap1_2-H2A/H2B). D'autre part, l'analyse par spectrométrie de masse non-dénaturante a montré que ce complexe de base peut s'oligomériser et contenir jusqu'à 6 copies de Nap1_2-H2A/H2B. L'analyse de ce complexe par spectrométrie de masse non-dénaturant a montré que ce complexe peu oligomériser dans un grand complexe contenant jusqu'à 6 copies de Nap1_2-H2A/H2B. Nous avons également obtenu la première structure cristalline à basse résolution de ce complexe. L'analyse du même complexe par microscopie électronique à coloration négative a révélé la présence en solution du même oligomère que dans l'unité asymétrique du cristal, qui contient aussi 6 copies de Nap1_2-H2A/H2B. Ainsi, nous avons pu mettre en évidence de nouvelles interfaces d'interaction entre les différents composants de ce complexe qui nous permettent de mieux comprendre le processus d'assemblage des nucléosomes. Le remodelage de la chromatine permet l'expression des gènes eucaryotes. Ce remodelage nécessite des enzymes telles que des histone acétyltransférases (HAT) et les chaperons d'histones. Les HATs acétylent les chaînes latérales des lysines. Il a été proposé que les HATs et les histones chaperons agissent en synergie pour moduler la structure de la chromatine pendant la transcription. La HAT p300 a été proposé d'interagir avec l'histone chaperon Nap1. Nous avons entrepris de caractériser cette interaction. Malheureusement, nos expériences n'ont pas pu détecter d'interaction directe entre ces protéines. / Assembly of chromatin is an essential process that concerns most DNA transactions in eukaryotic cells. The basic repeating unit of chromatin are nucleosomes, macromolecular complexes that consist of a histone octamer that organizes 147 bp of DNA in two superhelical turns. Although, the structures of nucleosomes are known in detail, their assembly is poorly understood. In vivo, nucleosome assembly is orchestrated by ATP-dependent remodelling enzymes, histone-modifying enzymes and a number of at least partially redundant histone chaperones. Histone chaperons are a structurally diverse class of proteins that direct the productive assembly and disassembly of nucleosomes by facilitating histone deposition and exchange. The currently accepted model is that nucleosome assembly is a sequential process that begins with the interaction of H3/H4 with DNA to form a (H3/H4)2 tetramer-DNA complex. The addition of two H2A/H2B dimers completes a canonical nucleosome. High-resolution structures of histone chaperons in complex with H3/H4 histones have resulted in detailed insights into the process of nucleosome assembly. However, our understanding of the mechanism of nucleosome assembly has been hampered by the as yet limited number of co-crystal structures of histone–chaperone complexes. In particular it remains unclear how histone chaperons mediate H2A/H2B deposition to complete nucleosome assembly. In this work, we have investigated the role of the H2A/H2B chaperon Nap1 (Nucleosome assembly protein 1) in nucleosome assembly. We have determined the crystal structure of the complex between Nap1 and H2A/H2B and analysed the assembly by various biophysical methods. The structure shows that a Nap1 dimer binds to one copy of H2A/H2B (Nap1_2-H2A/H2B). A large ~550 kDa macromolecular assembly containing 6 copies of the Nap12-H2A/H2B complex is seen in the asymmetric crystallographic unit. We confirmed by both non-denaturing mass spectroscopy and negative stain electron microscopy studies that this assembly is the predominant form of the Nap1_2-H2A/H2B complex in solution. We further investigated the potential interplay between p300-mediated histone acetylation and nucleosome assembly. Together, the structure and associated functional analysis provide a detailed mechanism for the Nap1 chaperon activity, its role in H2A/H2B deposition and in nucleosome assembly.
9

The role of the FACT complex in differentiation of multipotent stem cells

Hossan, Tareq 23 May 2016 (has links)
No description available.
10

Etude structurale et fonctionnelle de la variante d'histone H2AZ / Structural and functional study of the histone variant H2AZ

Obri, Arnaud 20 September 2012 (has links)
La variante d’histone H2AZ joue un rôle important dans l’activation de la transcription, la prolifération cellulaire, le développement et la différentiation. H2AZ orne les promoteurs de la majorité des gènes, mais les mécanismes de bases de cette localisation sont inconnus. La compréhension de l’assemblage et du désassemblage du nucléosome passe par la caractérisation de la dynamique du nucléosome et des chaperonnes d’histones. L’objectif de ma thèse était d’identifier des chaperonnes spécifiques impliqués dans la dynamique de H2AZ en utilisant une approche de protéomique. Pour élucider les mécanismes de déposition/éviction de H2AZ, j’ai purifié le complexe prénucléosomale de H2AZ et j’ai caractérisé toutes les protéines associées. J’ai trouvé que Anp32e fait partie du complexe p400/TIP60 qui est présumée pour être responsable de l’échange d’H2AZ sur la chromatine. Anp32e présente une spécificité pour le dimère H2AZ-H2B, car il n’interagit pas avec le dimère H2A-H2B. L’interaction est accomplie au niveau d’une petite région dans le domaine d’ancrage sur H2AZ et au niveau d’un nouveau domaine ZID sur Anp32e. Finalement, j’ai montré que la suppression d’Anp32e entraine : un défaut dans la dé-répression des gènes dont l’expression est contrôlée par une hormone et une accumulation sur les promoteurs de ces derniers. Dans l’ensemble ces résultats identifient Anp32e comme une nouvelle chaperonne de la variante d’histoneH2AZ impliquée dans l’éviction de H2AZ chez les mammifères. / The histone variant H2AZ has emerged as a key regulator of chromatin function and plays an essential role in transcriptional activation, cell proliferation, development, and differentiation. H2AZ marks nucleosomes flanking the promoters of most genes, but the mechanistic basis for this localization is unknown. A mechanistic understanding of nucleosome assembly/disassembly requiresa detailed knowledge of nucleosome thermodynamics and histone chaperones. The aim of my thesis was to identify specific chaperone involved in H2AZ dynamic by using biochemical and proteomic strategies. To elucidate the mechanism of H2AZ deposition/eviction, I purified the prenucelosomal H2AZ complex and characterized in details the interacting protein partners. I found that Anp32e is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. Bacterially expressed Anp32e binds only to the H2AZ/H2B dimers but not to the H2A/H2B. Anp32e interacts with a short region of the docking domain of H2A.Z. The binding occurred through a novel Anp32e motif, termed ZID. Finally, I show that down regulation of Anp32e interferes with both the de-repression of hormone dependent genes and H2A.Z removal from their promoter. Our data identified Anp32e as a novel mammalian H2AZ chaperone invoved in H2AZ eviction.

Page generated in 0.091 seconds