Spelling suggestions: "subject:"histones"" "subject:"pistones""
61 |
Caractérisation du complexe NuA4/TIP60 et ses liens avec le variant d'histone H2A.ZHumbert, Jonathan 13 December 2023 (has links)
L'organisation des génomes eucaryotes sous forme de chromatine constitue un élément de régulation essentiel de tous les processus cellulaires dépendants de l'ADN. Les facteurs intervenant sur cette organisation jouent donc un rôle crucial dans le bon fonctionnement et le maintien de l'identité des cellules et l'intégrité du matériel génomique. Le complexe NuA4/TIP60 est capable d'agir sur l'organisation de la chromatine de deux façons distinctes : premièrement en acétylant les histones H2A et H4 via sa sous-unité KAT5/Tip60, conduisant à une structure chromatinienne plus relâchée et accessible; deuxièmement en incorporant le variant d'histone H2A.Z dans la chromatine, conférant des propriétés particulières aux régions du génome concernées. NuA4/TIP60 joue ainsi un rôle central dans la régulation de nombreux processus cellulaires, en particulier l'expression des gènes et la réparation des dommages à l'ADN. Le complexe est composé d'au moins 17 sous-unités chez l'humain; les propriétés et fonctions de certaines de ces sous-unités restent à préciser dans le but de mieux comprendre comment NuA4/TIP60 régule l'organisation de la chromatine. Dans la première partie de mes travaux de doctorat présentés ici, nous avons cherché à clarifier la fonction du chromodomaine de KAT5/Tip60, la sous-unité catalytique du complexe. En effet des observations contradictoires avaient été rapportées dans la littérature, en particulier en ce qui concerne la capacité du chromodomaine à reconnaître des marques d'histones spécifiques. Nos résultats suggèrent que ce domaine régule plutôt l'activité acétyltransférase du complexe indépendamment des marques d'histones. Nous avons également caractérisé des mutations de KAT5/Tip60, dont l'une dans le chromodomaine, liées à un syndrome neurodéveloppemental chez plusieurs patients. Dans une deuxième partie, nous nous sommes intéressés à l'incorporation du variant d'histone H2A.Z au sein de la chromatine par NuA4/TIP60 et par un autre complexe, SRCAP. Nos résultats suggèrent que NuA4/TIP60 favorise l'un des paralogues de H2A.Z, H2A.Z.2, par rapport à H2A.Z.1, contrairement à SRCAP. Nous avons également identifié des partenaires spécifiques pour chaque paralogue de H2A.Z qui permettent d'expliquer une partie des rôles différents joués par ces paralogues dans la régulation de la transcription. Dans leur ensemble ces travaux contribuent à améliorer notre compréhension de la façon dont le complexe NuA4/TIP60 affecte l'organisation chromatinienne, et comment des perturbations de cette fonction peuvent entraîner des conséquences pathologiques sérieuses. / Eucaryotic genomes take the shape of chromatin, the organization of which affects all DNA-based cellular processes. Hence, factors involved in this organization are critical for maintaining proper cell function, identity, and genome integrity. The NuA4/TIP60 complex affects chromatin organization through two different mechanisms: first by acetylating histones H2A and H4 in chromatin, increasing its relaxation and accessibility; second by incorporating the histone variant H2A.Z into chromatin, assigning distinct properties to given genomic regions. NuA4/TIP60 therefore acts as a central regulator of many cellular processes, in particular gene expression and DNA damage repair. NuA4/TIP60 comprises at least 17 subunits, the functions and properties of many of which still need elucidating in order to better understand how the complex regulates chromatin structure. In the first part of my PhD project presented hereby, we aimed to clarify the function of KAT5/Tip60, the catalytical subunit of NuA4/Tip60. Contradictory results had been previously reported regarding the chromodomain ability to bind specific histone marks. Our results suggest that this domain instead regulates the acetyltransferase activity of NuA4/Tip60 independently of histone marks. We have also characterized mutations in KAT5/Tip60, one of them inside the chromodomain, linked to a rare neurodevelopmental syndrome. In the second part, we were interested in the incorporation of the histone variant H2A.Z in chromatin by NuA4/TIP60 as well as another complex, SRCAP. Our results suggest that NuA4/TIP60 favors one of the two H2A.Z paralogs, H2A.Z.2, over H2A.Z.1, as opposed to SRCAP which binds both equally. We also identified specific interactors for each paralog, which could explain in part how H2A.Z.1 and H2A.Z.2 regulate gene expression differently. Overall this work contributes to a better understanding of how NuA4/TIP60 regulates chromatin organization, and how disruption of these functions can lead to serious pathological outcomes.
|
62 |
Les histones déméthylases JMJD2A et JARID1A/B dans la régulation transcriptionnelle de la prolifération cellulaire / The histone demethylases JMJD2A, JARID1A and B in the transcriptional regulation of cell proliferationSalifou, Kader 28 April 2015 (has links)
L'ADN des cellules eucaryotes est enroulé autour de protéines appelées histones pour former la chromatine. Le niveau de compaction de la chromatine est dynamique. Ceci permet de réguler via l'accessibilité de l'ADN, les processus comme la transcription. Les histones peuvent subir des modifications post traductionnelles comme la méthylation, qui influencent le niveau de compaction de la chromatine. Par exemple, au niveau des promoteurs des gènes, la méthylation sur la lysine 9 de l'histone H3 (H3K9) est associée à la répression transcriptionnelle, tandis que la méthylation sur la lysine 4 (H3K4) est associée a l'activation transcriptionnelle. Ces marques sont mises en place par des histones méthyltransférases et enlevées par des histones déméthylases qui sont spécifiques des résidus méthylés. Ma thèse a porté sur l'étude d'histone déméthylases dans la régulation transcriptionnelle de gènes clé de la prolifération cellulaire, les gènes cibles de E2F et l'ADN ribosomique. Les facteurs E2Fs régulent des gènes comme CCNE et CDC6 impliques dans l'entrée et la progression en phase S. Ces gènes sont activés au début de la phase S. Le contrôle de la transcription de ces gènes est crucial pour un cycle cellulaire normal et leur dérégulation est associée à l'apparition de cancers. La répression et l'activation des gènes cibles de E2F au cours du cycle cellulaire fait intervenir le contrôle de la méthylation des résidus H3K4 et H3K9. Cependant, les histone déméthylases impliquées sont mal connues. Nous avons montré que les histones déméthylases JARID1A et JARID1B, spécifiques de H3K4, régulent la transcription de CCNE et CDC6 en phase S. JARID1A et JARID1B sont recrutées au promoteur de ces gènes. Elles sont importantes pour limiter leur activation lors de la progression en phase S. Cette étude montre pour la première fois l'implication de ces histones déméthylases dans la régulation fine des gènes cibles de E2F au cours du cycle cellulaire. La transcription des gènes ribosomiques ou ADNr par l'ARN Polymérase I (Pol-I) est la première étape de la biogénèse des ribosomes. Elle a lieu dans les nucléoles. Ce processus est étroitement lié à la croissance et la prolifération cellulaire. Une transcription Pol-I accrue et des nucléoles hypertrophiés sont des caractéristiques communes à un grand nombre de cellules cancéreuses. La transcription Pol-I est adaptée à la disponibilité en facteurs de croissance. Ainsi, elle est réprimée lorsque les cellules sont privées en facteurs de croissance et activée en leur présence. Cette réponse est sous le contrôle de cascades de signalisation cellulaire comme la voie Phosphatidyl-Inositol-3-Phosphate (PI3K). Il est connu que des événements dynamiques de méthylation d'histones participent à cette régulation. Cependant, on sait peu de choses sur comment les voies de signalisation régulent ces événements. En collaboration avec l'équipe du Dr. Konstantin Panov, nous avons observé que l'histone déméthylase JMJD2A, spécifique de H3K9, est présente dans les nucléoles de cellules humaines. JMJD2A, via sa capacité à déméthyler H3K9, est requise pour activer la transcription Pol-I en réponse aux facteurs de croissance. Nous montrons également que PI3K régule cette réponse chromatinienne en déclenchant l'accumulation de JMJD2A dans les nucléoles en réponse aux facteurs de croissance. Cette étude indique que la régulation de la localisation subnucléraire de JMJD2A en réponse à la voie PI3K est un des mécanismes par lesquels les cellules adaptent leur capacité de synthèse protéique à la disponibilité de facteurs de croissance. Mes travaux de thèse renforcent notre compréhension des mécanismes impliquant des histones déméthylases dans la régulation de la prolifération cellulaire. Comprendre ces mécanismes est crucial et permettra de cibler ces enzymes dans le traitement des pathologies de la prolifération cellulaire comme le cancer. / In eukaryote nuclei, DNA is wrapped around histone proteins. This structure is called the chromatin. The compaction level of chromatin is highly dynamic. This allows the regulation of gene transcription which requires free access to the DNA. Histone proteins undergo several post translational modifications including methylation that impact chromatin compaction. For example, at genes promoters, methylation on the lysine 9 of histone H3 (H3K9) is associated with chromatin compaction and thereby transcription repression, whereas methylation on histone H3 lysine 4 (H3K4) is associated with transcriptional activation. Histone methylation is set by enzymes called histone methyltransferases and removed by histone demethylases which are specific for methylated residues. During my PhD, I studied the role of histone demethylases in the transcriptional regulation of cell proliferation master genes, E2F-regulated genes and rDNA transcription. E2F transcription factors regulate genes like CCNE or CDC6 involved in entry and progression through S phase. Those genes must be activated at the onset of S phase. The transcriptional control of those genes is crucial for a normal cell cycle, and their deregulation is associated with cancer development. Histone methylation events are involved in the repression and activation of E2F target genes during cell cycle progression. However the histone demethylases involved are still unclear. We have shown that the H3K4-specific histone demethylases JARID1A and JARID1B are involved in the fine-tuning of CCNE and CDC6 transcription during S phase. JARID1A and JARID1B are recruited on the promoter of those genes and help limiting their activation at the beginning of S phase. This study shows for the first time the role of those histone demethylases in the fine tuned regulation of E2F targets genes during S phase. Ribosomal DNA (rDNA) transcription is the first step of ribosome biogenesis. rDNA is transcribed in the nucleolus by RNA polymerase I (Pol-I). Pol-I transcription is tightly linked to cell growth and proliferation. High levels of Pol-I transcription along with hypertrophied nucleoli is a hallmark of several cancers cells. Pol-I transcription must be regulated according to the availability of growth factors. It is repressed when the cells are deprived of growth factors and activated when growth factors are available. This regulation is under the control of cellular signaling pathways including the Phosphatidyl-Inositol-3-Kinase (PI3K) pathway. Histone methylation events are known to play a role in this regulation. However little is known about how the cell signaling pathways modulate the chromatin response in this process. In collaboration with the team of Dr. Konstantin Panov, we observed that the H3K9-specific histone demethylase JMJD2A is present in the nucleoli of human cells. We showed that JMJD2A, through its ability to demethylate H3K9, is required for the activation of Pol-I transcription in response to growth factors. We further show that PI3K regulate this chromatin response by triggering accumulation of JMJD2A in the nucleoli in response to growth factors. This study demonstrates a yet unknown role for JMJD2A in Pol-I transcription and suggests that the control of JMJD2A localization by the PI3K pathway is a crucial mechanism by which cells adapt protein synthesis to the availability of growth factors. My PhD work helps strengthening our understanding of the mechanisms that involve histone demethylases in the regulation of cell proliferation genes. Understanding those mechanisms is crucial as it might help targeting those enzymes for the treatment of cell proliferation-associated diseases like cancer.
|
63 |
Antitumor activity of antimalarials in human breast cancer cellsZhou, Qun. January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains viii, 146 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 125-142).
|
64 |
The involvement of chromatin in mouse embryo developmentSarmento, Olga Filomena Peixoto. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
|
65 |
The structure of the chromatin axis during transcriptionEricsson, Christer. January 1988 (has links)
Thesis (doctoral)--Karolinska Institutet, Stockholm, 1988. / Extra t.p. with thesis statement inserted. Includes bibliographical references.
|
66 |
A role of TSPYL2, a novel nucleosome assembly protein, in transcriptional regulationWong, Hiu-ting., 王曉婷. January 2009 (has links)
published_or_final_version / Paediatrics and Adolescent Medicine / Master / Master of Philosophy
|
67 |
Structural, mechanistic and inhibition studies on the histone lysine demethylasesRose, Nathan Rolf January 2009 (has links)
Histone lysine demethylases comprise an important family of epigenetic regulatory enzymes. They catalyse the demethylation of tri-, di- and monomethylated lysine residues on histone H3, thus contributing to either silencing or activation of chromatin. Their biological roles are widespread and have just begun to be elucidated. Among other functions, they contribute to establishment and maintenance of pluripotent states in embryonic stem cells, and also to cellular differentiation during development. Abnormal expression or mutation of some demethylases has been linked to diverse diseases, from prostate and oesophageal cancers to X-linked mental retardation. The development of small molecule inhibitors of histone demethylases is therefore of interest, both from the therapeutic perspective, and with the aim of developing chemical probes to understand the diverse functions of the demethylases in vivo. Most histone lysine demethylases belong to the 2-oxoglutarate and ferrous iron dependent dioxygenase superfamily. This family utilises molecular oxygen to catalyse hydroxylation of substrates, together with oxidation/decarboxylation of the 2-oxoglutarate cofactor. In the work outlined in this thesis, the JMJD2 family of histone demethylases was characterised biochemically, with attention given to mechanism, substrate selectivity and the role of eo factors. JMJD2E was identified herein as a novel histone demethylase in H. sapiens, and was shown to be selective for the demethylation of tri-, di- and monomethylated lysine 9 in histone H3. JMJD2E was also found to be particularly amenable to mechanistic and inhibition studies in vitro. A variety of mechanistic investigations established details of the catalytic cycle, its substrate selectivity and the role of iron and ascorbic acid as cofactors. Crystallographic analyses were also employed to compare its substrate selectivity to other JMJD2 family members. Assays suitable for the evaluation of inhibitors of the JMJD2 demethylases were then developed. These included a coupled enzyme assay suitable for kinetic measurements, and two mass spectrometric assays for observing inhibitor binding and catalytic activity. A critical review of the 20G oxygenase inhibitor literature carried out, and was then used as a basis for the identification of inhibitor scaffolds for the JMJD2 demethylases. These were characterised both in vitro (using kinetic assays, mass spectrometry and crystallography), and in cell culture. Some were further developed to achieve selective inhibition of the JMJD2 demethylases over the related prolyl hydroxylase PHD2; crystallography was again employed to understand the mode of inhibition of these potent inhibitors. The kinetic assays developed were optimised for use in a high-throughput screen, and a library of 240 000 compounds was screened against JMJD2E. This was the first instance of high-throughput screening against these promising therapeutic targets. Several hit compounds were identified and characterised further in vitro. Finally, alternative means of inhibiting the JMJD2 demethylases were investigated. Compounds were identified that inhibited JMJD2A by ejection of its unique structural zinc ion, thus demonstrating that selective inhibition of the JMJD2 demethylase family is possible. In summary, this work contains the first detailed investigation of a histone demethylase subfamily, and also the first steps towards identifying potent, selective inhibitors of these epigenetic regulatory enzymes.
|
68 |
Holocentromeres and the centromeric histone H3 proteins.January 2011 (has links)
Cheung, Wai Kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 66-76). / Abstracts in English and Chinese. / List of Figures --- p.v / List of Tables --- p.vi / List of Abbreviations --- p.vii / Acknowledgements --- p.ix / Abstract --- p.xi / 摘要 --- p.xiii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Centromere and Kinetochore --- p.1 / Chapter 1.2 --- The Kinetochore Subunits: Centromeric Nucleosomes --- p.2 / Chapter 1.3 --- CenH3: The Centromere Specific Histone --- p.5 / Chapter 1.4 --- The Centromeric DNA: Tandem Repeats and Retrotransposons --- p.8 / Chapter 1.5 --- The Genetic and Epigenetic Nature of the Centromeres --- p.9 / Chapter 1.6 --- Point Centromeres and Regional Centromeres --- p.10 / Chapter 1.7 --- Holocentric Chromosomes --- p.11 / Chapter 1.8 --- Hypothesis --- p.13 / Chapter Chapter 2 --- Materials and methods --- p.15 / Chapter 2.1 --- Chemicals --- p.15 / Chapter 2.2 --- Bacterial strains in routine cloning --- p.15 / Chapter 2.3 --- Plant materials in cloning and transformation --- p.15 / Chapter 2.4 --- Construction of LnCENH3-GFP and CeHCP3-DsRED chimeric gene cassettes for rice transformation --- p.15 / Chapter 2.5 --- Cloning of CENH3 gene of Luzula spp --- p.22 / Chapter 2.6 --- Construction of full length OsCENH3 RNAi and 150bp OsCENH3 RNAi constructs for rice transformation --- p.22 / Chapter 2.7 --- Agrobacterium-mediated transformation of rice (Oryza sativa L.japonica. cv. Nipponbare) --- p.24 / Chapter 2.8 --- Gene gun transformation of rice (Oryza sativa L.japonica. cv. Nipponbare) by Biolistic PDS-1000/He´ёØ System (Bio-rad) --- p.26 / Chapter 2.9 --- Detection of transgenes expression --- p.28 / Chapter 2.10 --- Nuclear protein extraction --- p.29 / Chapter 2.11 --- Protein-DNA Binding Assay --- p.30 / Chapter 2.12 --- Protein precipitation by methanol-chloroform --- p.32 / Chapter 2.13 --- Western blot analysis of proteins from Protein-DNA binding assay --- p.33 / Chapter 2.14 --- Tubulin immunolocalization of root tips --- p.33 / Chapter 2.15 --- Bioinformatics analysis --- p.34 / Chapter Chapter 3 --- Results --- p.36 / Chapter 3.1 --- Plant transformation vectors construction --- p.36 / Chapter 3.2 --- Rice transformation --- p.38 / Chapter 3.3 --- Transgenic plants screening --- p.39 / Chapter 3.4 --- Analysis of the codon usages of CeHCP-3 gene in C. elegans and O. sativa --- p.42 / Chapter 3.5 --- In vitro Protein-DNA binding assays --- p.44 / Chapter 3.6 --- Subcellular localization study of LnCENH3 in rice --- p.46 / Chapter 3.7 --- Chromosome morphology of the transgenic rice expression LnCENH3 --- p.47 / Chapter 3.8 --- Tubulin immunolocalization of LnCENH3-GFP transgenic rice --- p.49 / Chapter 3.9 --- Cloning of CENH3s in Luzula genus --- p.51 / Chapter 3.10 --- Bioinformatics analysis of Luzula CENH3s --- p.53 / Chapter Chapter 4 --- Discussion --- p.57 / Chapter 4.1 --- Expression of fusion proteins in rice --- p.57 / Chapter 4.2 --- Incorporation of LnCENH3-GFP in nucleosomes --- p.57 / Chapter 4.3 --- Expression pattern of LnCENH3-GFP in rice --- p.58 / Chapter 4.4 --- Formation of additional kinetochores on transgenic rice chromosome --- p.60 / Chapter 4.5 --- Deletion of 8 amino acids in LeCENH3 --- p.62 / Chapter Chapter 5 --- Conclusion --- p.65 / References --- p.66 / Chapter 5.1 --- Appendix --- p.77
|
69 |
Characterization of histones and their post-translational modifications using reversed-phase high performance liquid chromatography and mass spectrometrySu, Xiaodan. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2009 Aug 16
|
70 |
Investigating the Influence of CHD1 on Newly Deposited Histones in Drosophila MelanogasterKim, Catherine S 01 January 2015 (has links)
Chromatin remodelers such as CHD1 (chromodomain, helicase/ATPase, DNA-binding domain) regulates histone dynamics and allows for higher order of chromatin compaction.CHD1 has been found to be important in fertility, wing development, and it colocalizes with elongating RNA polymerase II in Drosophila melanogaster. CHD1 is also important in embryonic stem cell pluripotency in mice and chd1 is the second most deleted gene in prostate cancer in humans. Furthermore, CHD1 suppresses the level of H3 dimethylated on lysine 9 (H3K9me2) and heterochromatin protein 1a (HP1a) to antagonize repressive chromatin. To complement these studies, I am seeking to determine the possible role of CHD1 on H3K9me2 and H3K56ac. Influence of CHD1 on histone dynamics is examined by using native chromatin immunoprecipitation at CrebA. We observed that H3K9me2 levels do not significantly increase over a single active gene in Drosophila salivary glands with the loss of CHD1, which implies CHD1’s effect might be only limited to heterochromatic regions. Additionally, I have preliminary evidence that the loss of CHD1 leads to an increase in the level of H3 acetylated on lysine 56, a mark of newly deposited histones. This evidence together with yeast studies provides a model for how CHD1 regulates nucleosome turnover.
|
Page generated in 0.0493 seconds