• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hitting sets : VC-dimension and Multicut / Transversaux : VC-dimension et Multicut

Bousquet, Nicolas 09 December 2013 (has links)
Dans cette thèse, nous étudions des problèmes de transversaux d'un point de vue tant algorithmique que combinatoire. Etant donné un hypergraphe, un transversal est un ensemble de sommets qui touche toutes les hyperarêtes. Un packing est un ensemble d'hyperarêtes deux à deux disjointes. Alors que la taille minimale d'un transversal est au moins égale à la taille maximale d'un packing on ne peut pas dans le cas général borner la taille minimale d'un transversal par une fonction du packing maximal. Dans un premier temps, un état de l'art rappelle les différentes conditions qui assurent l'existence de bornes supérieures sur la taille des transversaux, en particulier en fonction de la taille d'un packing. La plupart d'entre elles sont valables lorsque la VC-dimension de Vapnik-Chervonenkis de l'hypergraphe, est bornée. L'originalité de la thèse consiste à utiliser ces outils d'hypergraphes pour obtenir des résultats sur des problèmes de graphes. Nous prouvons notamment une conjecture de coloration de Scott dans le cas des graphes sans-triangle maximaux; ensuite, nous généralisons un résultat de Chepoi, Estellon et Vaxès traitant de domination à grande distance; enfin nous nous attaquons à une conjecture de Yannakakis sur la séparation des cliques et des stables d'un graphe.Dans un second temps, nous étudions les transversaux d'un point de vue algorithmique. On se concentre plus particulièrement sur les problèmes de séparation de graphe où on cherche des transversaux à un ensemble de chemin. En combinant des outils de connexité, les séparateurs importants et le théorème de Dilworth, nous obtenons un algorithme FPT pour le problème Multicut paramétré par la taille de la solution. / In this manuscript we study hitting sets both from a combinatorial and from an algorithmic point of view. A hitting set is a subset of vertices of a hypergraph which intersects all the hyperedges. A packing is a subset of pairwise disjoint hyperedges. In the general case, there is no function linking the minimum size of a hitting set and a maximum size of a packing.The first part of this thesis is devoted to present upper bounds on the size of hitting sets, in particular this upper bounds are expressed in the size of the maximum packing. Most of them are satisfied when the dimension of Vapnik-Chervonenkis of the hypergraph is bounded. The originality of this thesis consists in using these hypergraph tools in order to obtain several results on graph problems. First we prove that a conjecture of Scott holds for maximal triangle-free graphs. Then we generalize a result of Chepoi, Estellon and Vaxès on dominating sets at large distance. We finally study a conjecture of Yannakakis and prove that it holds for several graph subclasses using VC-dimension.The second part of this thesis explores algorithmic aspects of hitting sets. More precisely we focus on parameterized complexity of graph separation problems where we are looking for hitting sets of a set of paths. Combining connectivity tools, important separator technique and Dilworth's theorem, we design an FPT algorithm for the Multicut problem parameterized by the size of the solution.
2

Hitting sets : VC-dimension and Multicut

Bousquet, Nicolas 09 December 2013 (has links) (PDF)
In this manuscript we study hitting sets both from a combinatorial and from an algorithmic point of view. A hitting set is a subset of vertices of a hypergraph which intersects all the hyperedges. A packing is a subset of pairwise disjoint hyperedges. In the general case, there is no function linking the minimum size of a hitting set and a maximum size of a packing.The first part of this thesis is devoted to present upper bounds on the size of hitting sets, in particular this upper bounds are expressed in the size of the maximum packing. Most of them are satisfied when the dimension of Vapnik-Chervonenkis of the hypergraph is bounded. The originality of this thesis consists in using these hypergraph tools in order to obtain several results on graph problems. First we prove that a conjecture of Scott holds for maximal triangle-free graphs. Then we generalize a result of Chepoi, Estellon and Vaxès on dominating sets at large distance. We finally study a conjecture of Yannakakis and prove that it holds for several graph subclasses using VC-dimension.The second part of this thesis explores algorithmic aspects of hitting sets. More precisely we focus on parameterized complexity of graph separation problems where we are looking for hitting sets of a set of paths. Combining connectivity tools, important separator technique and Dilworth's theorem, we design an FPT algorithm for the Multicut problem parameterized by the size of the solution.
3

Hitting and Piercing Geometric Objects Induced by a Point Set

Rajgopal, Ninad January 2014 (has links) (PDF)
No description available.
4

Algorithmes exacts et exponentiels pour les problèmes NP-difficiles sur les graphes et hypergraphes / Exact Exponential-Time Algorithms for NP-hards Problems on Graphs and Hypergraphs

Cochefert, Manfred 18 December 2014 (has links)
Dans cette thèse, nous nous intéressons à la résolution exacte de problèmes NP-difficiles sur les graphes et les hypergraphes. Les problèmes que nous étudions regroupent dans un premier temps des variantes du problème classique du nombre chromatique. Les variantes de ce problème se distinguent par la difficulté introduite par les relations entre les classes de couleurs, ou la difficulté de reconnaissance des classes de couleurs elles-mêmes. Puis nous ferons le lien avec les problèmes de transversaux sur les hypergraphes. Plus particulièrement, il s’agira de s’intéresser à l’énumération de transversaux minimaux dans un hypergraphe de rang borné. Outre la résolution exacte, nous nous intéressons à la résolution à paramètre fixe. Le problème de racine carrée de graphe est un problème important en théorie des graphes. Nous proposons et montrons la solubilité à paramètre fixe de deux problèmes d’optimisation reliés. Finalement, nous nous intéresserons à la résolution de problèmes de graphe, soit en lien avec les problèmes de colorations, soit pour montrer les performances possibles de différents algorithmes en fonction de l’espace mémoire disponible. Dans cette thèse, nous aurons à cœur d’appliquer judicieusement la grande majorité des techniques essentielles en algorithmique exacte exponentielle. Principalement, nous appliquerons la programmation dynamique ou le principe d’inclusion-exclusion pour les problèmes de coloration. La technique de programmation dynamique se retrouvera pour d’autres problèmes de cette thèse, aux côtés d’autres méthodes comme la technique de branchement ou de mesurer et conquérir / In this thesis, we are interested in the exact computation of np-hard problems on graphs and hypergraphs. Firstly, we study several variants of colorings. Those variants appear harder than the famous chromatic number problem, by adding difficulty in recognizing the color classes, or more often by introducing various relationships between them. Then we link to problems of transversals in hypergraphs. More precisely, we are interested in enumerating minimal transversals in bounded ranked hypergraphs. Besides the exact computation, we are also interested in fixed parameter tractability. For this area, we study two optimization versions of the famous square root of graphs problem. Finally, we will be interested in solving other problems of graphs related to colorings, or in order to compare efficiencies of algorithms depending on the memory space available. In this thesis, we will apply most of major techniques in designing exact exponential algorithms. The main techniques we use are dynamic programming, inclusion-exclusion, branching, or measure and conquer

Page generated in 0.0749 seconds