• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A mobile high-precision gravimeter based on atom interferometry

Schmidt, Malte 08 November 2011 (has links)
Im Jahr 1991 wurde erstmals die Interferenz von Atomen experimentell nachgewiesen. Seitdem wird dieses Phänomen in vielen Bereichen der Grundlagenforschung angewendet, unter anderem zur Bestimmung von Naturkonstanten mit bisher unerreichter Genauigkeit oder für Tests des Äquivalenzprinzips. Grundsätzlich können auch geophysikalische Vermessungen des Schwerefeldes der Erde von dieser neuen Technik profitieren, allerdings waren Atominterferometrie-Experimente aufgrund ihrer Komplexität bisher nur in Laboren möglich. Erst kürzlich wurde mit der Entwicklung mobiler Atominterferometer begonnen, die nun die hochpräzise Messung von Rotationen, Gravitationsgradienten sowie der absoluten Schwerebeschleunigung außerhalb von Laboren ermöglichen. Im Rahmen dieser Arbeit wurde ein absolutes Gravimeter entwickelt, konstruiert und getestet. Es basiert auf Rb87-Atomen, die in einer Vakuumumgebung gefangen, gekühlt und senkrecht entgegen der Erdanziehung beschleunigt werden. Während des anschließenden freien Falls werden die atomaren Ensembles durch drei Raman Lichtpulse aufgespalten und rekombiniert. Die lokale Schwerebeschleunigung kann aus den resultierenden Interferenzmustern bestimmt werden, die abhängig von der Bewegung der Atome in einem Gravitationspotential sind. Wir haben den Wert der lokalen Schwerebeschleunigung, g, mit einer Auflösung von 1 : 10^10 bei einer Integrationszeit von 12 Stunden vermessen. Dies entspricht 2,2 * 10^-7 m/s^2/Sqrt(Hz). Mit dieser Genauigkeit konnten bereits zeitliche Veränderungen des lokalen Schwerefeldes registriert werden, hervorgerufen durch eine Vielzahl an Effekten wie Erd- und Ozeangezeiten oder atmosphärischen Variationen. In einem Vergleich unter ähnlichen Messbedingungen konnte unser Instrument die lokale Schwerebeschleunigung mit einer um fast eine Größenordnung höheren Genauigkeit bestimmen als ein herkömmliches Gravimeter. / Since 1991, matter wave interferometry has been used in many laboratories for a variety of fundamental physics experiments, e.g. measurement of the fine-structure and gravity constants or equivalence principle tests. This new technique is also ideally suited for high-accuracy geophysical gravity measurements. However, due to the complexity of these experiments they were so far confined to laboratory environments. Only in recent years efforts have been undertaken to develop mobile atom interferometers. These new sensors now open up the possibility to perform on-site high-precision measurements of rotations, gravity gradients as well as absolute accelerations. This work reports on the design, construction and first tests of an absolute gravimeter. It is based on interfering ensembles of laser cooled Rb87 atoms in a one meter high atomic fountain configuration. Local gravity is measured by applying three Raman light pulses while the atoms are in free fall, thereby splitting and recombining the atomic wave packets. The resulting interference fringes are sensitive to the movement of the atoms within a gravitational potential. We have measured the value of local gravity g at a resolution of one part in 10^10 at an integration time of 12 hours, or 2.2 * 10^-7 m/s^2/Sqrt(Hz). This was high enough to be sensitive to a number of time varying gravity effects like tides, ocean loading or changes in gravity caused by air pressure. In a comparison under similar measurement conditions, the instrument has surpassed the performance of conventional mobile gravimeters by almost one order of magnitude.
2

A mobile, high-precision atom-interferometer and its application to gravity observations

Hauth, Matthias 01 September 2015 (has links)
Atom Interferometrie ist eine sehr genaue und sensitive Methode mit einer Vielzahl von Anwendungsmöglichkeiten, zu der auch die Messung der Erdbeschleunigung zählt. Während die meisten Atom Interferometer aus großen, ortsfesten Aufbauten bestehen, werden auf diesem Gebiet häufig mobile Messgeräte benötigt. Das Gravimetric Atom Interferometer (GAIN) Projekt wurde ins Leben gerufen, um dieser zusätzlichen Anforderung bei bestmöglicher Messgenauigkeit gerecht zu werden. Es soll eine Alternative zu anderen modernsten Gravimetertypen geschaffen werden, die wichtige funktionale Eigenschaften wie eine hohe Auflösung und absolute Genauigkeit in einem Gerät vereint. Der GAIN Sensor verwendet lasergekühlte Rb87 Atome in einer 1 m hohen Fontäne. Mit Hilfe von stimulierten Raman Übergängen wird ein beschleunigungssensitives Interferometer realisiert. In dieser Arbeit wurde der Sensor mit Blick auf mobile und driftfreie Langzeitmessungen weiterentwickelt. Dafür wurden einzelne Subsysteme des Laseraufbaus auf die daraus resultierenden Anforderungen hin angepasst oder neu entwickelt. Mit derselben Zielstellung wurden weiterhin systematische Effekte in dem Messaufbau untersucht und Maßnahmen für ihre Reduzierung realisiert. Der Aufbau wurde transportiert und in relevanten Umgebungen getestet. Dabei konnte gezeigt werden, dass die Leistungsfäigkeit dieses Aufbaus mit denen der wichtigsten und modernsten Gravimeter konkurieren kann, sie teilweise übertrifft und dass dieser Sensor zur präzisen Kalibrierung der relativen Gravimeter verwendet werden kann. In den Messungen wurde eine Sensitivität von 138 nm/s^2/Sqrt(Hz) sowie eine Langzeitstabilität von 5 x 10^−11 g über 10^5 s erreicht. / Atom interferometry offers a very precise and sensitive measurement tool for various areas of application whereof one is the registration of the gravity acceleration. While the vast majority of atom interferometers include large and stationary setups, this field very often implies the additional request for a mobile apparatus. The Gravimetric Atom Interferometer (GAIN) project has been started to meet this requirement and to provide best possible accuracy at the same time. It aims to realize an alternative to other types of gravimeters and to combine important qualities such as high sensitivity and absolute accuracy in one instrument. The GAIN sensor is based on laser-cooled Rb87 atoms in a 1 m atomic fountain. Stimulated Raman transitions form a Mach-Zehnder type interferometer which is sensitive to accelerations. In this work it has been advanced to meet all requirements for mobile and drift-free long-term operation. Therefore, selected parts of the laser system have been improved or redeveloped. A second focus has been on systematic effects for the same objective. They have been analyzed and measures for their suppression have been undertaken. The apparatus has been transported, tested in relevant environments, and compared to the most important state-of-the-art gravimeter types where a competitive performance has been achieved. It is demonstrated, that the gravity signal of this sensor allows for a precise calibration of the relative gravimeter types. During the measurements a best sensitivity of 138 nm/s^2/Sqrt(Hz) and a stability of 5 x 10^−11 g after 10^5 s has been reached.

Page generated in 0.1026 seconds