• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electric Space Propulsion Concepts Using Calcium Aluminate Electride Hollow Cathodes

Gondol, Norman 27 June 2022 (has links)
This dissertation investigates the possibility of using compact and heaterless calcium aluminate electride hollow cathodes in different electric propulsion systems for space applications. As conventional hollow cathodes generally require a heater to reach the high operating temperatures necessary to thermally emit electrons, research on low temperature heaterless hollow cathodes as electron sources has been increasing. Efforts at Technische Universität Dresden have resulted in an operational hollow cathode design that can be reliably used for low current plasma discharges. Hollow cathodes are crucial components in electric propulsion systems to ionize the propellant and neutralize the extracted ion beam. The successful development of an operational hollow cathode opens the possibility of using the design in different low-power electric propulsion systems. As the electron emission properties of C12A7:e- are still not well understood, a volume-averaged hollow cathode model has been developed as part of this thesis to obtain an improved insight into the plasma processes governing the cathode discharge. The model consists of two computational domains in which the plasma properties are volume-averaged. A lumped-node thermal model coupled with the plasma model provides the cathode temperature distribution for different operating points. The model moreover provides the discharge voltage which can be directly compared to experimental data. The thermal model was compared to thermal measurements to derive adequate values for free model parameters. The discharge voltage fits well for a 1 A discharge but diverges from measurement data at higher currents. The model is a starting point for further modeling efforts and needs to be verified using extensive plasma diagnostics. The first electric propulsion system developed as part of this thesis is an electrothermal device that takes advantage of high particle temperatures in a hollow cathode discharge. A performance model and preliminary test series were used to derive design parameters for a prototype that was used for an extensive parameter study. The thruster reliably generates thrust over a current range between 1 A – 3 A. The thrust achieved with this device is in the high micronewton to low millinewton range. The specific impulse is on the order of 100 s, which is low for electric propulsion systems, and the high discharge voltages of approximately 50 V limit the achievable efficiency to <1%. The second thruster concept is a DC discharge gridded ion thruster using a C12A7:e- hollow cathode as the discharge cathode and the neutral gas inlet. An analytical discharge model combined with a particle-in-cell simulation for ion extraction by electrostatically biased grids was used to design a modular testing prototype. The concept requires a low discharge current on the order of 200 mA. Operating the cathodes in a milliamp discharge current range proved to be difficult and was accompanied by high discharge voltages. Extracting an ion beam from the testing prototype was not successful. The third propulsion system is a magnetoplasmadynamic thruster (MPDT) that takes advantage of a strong magnetic field generated by permanent magnets and an orthogonal current in a plasma discharge using a C12A7:e- hollow cathode. Conventional MPDTs require high current discharges to generate a sufficiently strong self-induced magnetic field. The developed concept is a design alternative to expand the operational envelope to lower powers. A major advantage is the comparatively easy scalability of the device. One prototype for the low amp current range was developed and successfully operated. The generated thrust is in the low millinewton range with a specific impulse up to 1,200 s. The test series highlighted thermal problems with the design. Consequently, a sub-amp version of the concept was developed. The thruster was successfully operated but required high mass flow rates, lowering the specific impulse and efficiency.
2

A volume‑averaged plasma model for heaterless C12A7 electride hollow cathodes

Gondol, Norman, Tajmar, Martin 04 April 2024 (has links)
A volume-averaged hollow cathode plasma model is presented that serves as a preliminary design tool for orificed hollow cathodes. The plasma discharge volume is subdivided into two computational domains with separate sub-models that are used to determine the emitter and orifice region plasma parameters. The plasma model is coupled with a lumped node thermal model that uses power inputs from the plasma model to estimate the temperature distribution of the hollow cathode. The model has been implemented for conventional cylindrical emitter geometries and for novel disc-shaped emitters. A lanthanum hexaboride (LaB6) hollow cathode has been used to validate the cylindrical model results and shows good agreement with well-known trends of hollow cathodes and published model data, while a calcium aluminate electride (C12A7:e-) hollow cathode developed at Technische Universität Dresden (TUD) served as the basis for the disc configuration. The model results of the disc configuration are presented and discussed to identify trends and optimization potential for hollow cathodes using C12A7:e- emitters. The model results in combination with thermal measurements of the TUD hollow cathode indicate a work function of C12A7:e- in a hollow cathode plasma below 2 eV.
3

Plasmaphysikalische Charakterisierung einer magnetfeldgestützten Hohlkathoden-Bogenentladung und ihre Anwendung in der Vakuumbeschichtung

Zimmermann, Burkhard 07 March 2013 (has links) (PDF)
Die vorliegende Dissertation behandelt Charakterisierung, Modellbildung sowie Anwendung einer magnetfeldgestützten Hohlkathoden-Bogenentladung. Hohlkathoden sind seit den 1960er Jahren Gegenstand grundlagen- sowie anwendungsorientierter Forschung und werden seit 20 Jahren am Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik für die Anwendung auf dem Gebiet der Vakuumbeschichtung weiterentwickelt. Ziel dieser Arbeit ist es, die technologischen Fortschritte physikalisch zu verstehen und gezielte Weiterentwicklungen für spezifische Einsatzgebiete zu ermöglichen. In der untersuchten Hohlkathodenbauform ist das aus Tantal bestehende, vom Arbeitsgas Argon durchströmte Kathodenröhrchen koaxial von einer Ringanode sowie von einer Magnetfeldspule umgeben. Die Entladung wird durch Hochspannungspulse gezündet, worauf sich ein diffuser Bogen im Röhrchen (internes Plasma) ausbildet. Das Röhrchen wird von Plasmaionen auf hohe Temperaturen geheizt, die eine thermionische Emission von Elektronen ermöglichen, welche das Plasma speisen. Das technologisch nutzbare externe Plasma wird im Vakuumrezipienten durch Wechselwirkung der Gasteilchen mit Strahlelektronen aus der Kathode erzeugt. Bei starker Reduktion des Arbeitsgasflusses wird die Entladung durch das Magnetfeld der Spule stabilisiert. Der experimentelle Befund, dass dadurch Plasmadichte und -reichweite sowie ggf. die Ladungsträgerenergien im Rezipienten aufgrund des intensiveren Elektronenstrahls wesentlich gesteigert werden können, wird durch ortsaufgelöste Langmuir-Sondenmessung, optische Emissionsspektroskopie und energieaufgelöste Massenspektrometrie ausführlich belegt und nach der Lösung von Strom- und Wärmebilanzgleichungen durch die Verhältnisse im Kathodenröhrchen begründet. Neben Argon werden auch typische Reaktivgase der Vakuumbeschichtung im Hohlkathodenplasma betrachtet: zum einen Stickstoff und Sauerstoff, die in reaktiven PVD-Prozessen (physikalische Dampfphasenabscheidung) zur Beschichtung mit Oxid- bzw. Nitridschichten zum Einsatz kommen und durch Ionisation, Dissoziation und Anregung im Hohlkathodenplasma verbesserte Schichteigenschaften ermöglichen; zum anderen Azetylen, das bei PECVD (plasmagestützte chemische Dampfphasenabscheidung) von amorphen wasserstoffhaltigen Kohlenstoffschichten z. B. für tribologische oder biokompatible Beschichtungen genutzt wird. Azetylen wird durch Streuprozesse mit Elektronen und Ionen im Plasma aufgespalten, wodurch schichtbildende Spezies erzeugt werden, die am Substrat kondensieren. Durch die Wahl der Plasmaparameter sowie durch abgestimmte Substratbiasspannung und Substratkühlung lassen sich die Beschichtungsrate einstellen sowie polymer-, graphit- oder diamantartige Eigenschaften erzielen. Neben der Plasmadiagnostik mittels energieaufgelöster Massenspektrometrie werden die erzeugten Kohlenstoffschichten vorgestellt und hinsichtlich Härte, Zusammensetzung und Morphologie analysiert. / In the present thesis, characterization, modeling and application of a magnetically enhanced hollow cathode arc discharge are presented. Since the 1960s, hollow cathodes are being studied in basic and applied research. At Fraunhofer Institute for Electron Beam and Plasma Technology, further development concerning the application in vacuum coating technology has been carried out for about twenty years. The present work targets on physically understanding the technological progress in order to enable specific further development and application. In the investigated hollow cathode device, a ring-shaped anode and a magnetic field coil are arranged coaxially around the tantalum cathode tube, which is flown through by argon as the working gas. The discharge is ignited by high voltage pulses establishing a diffuse arc within the cathode tube (internal plasma). The cathode is being heated by the plasma ions to high temperatures, which leads to thermionic emission of electrons sustaining the plasma. The external plasma in the vacuum chamber, which can be used for technological applications, is generated by collisions of gas atoms with beam electrons originating from the cathode. In the case of strongly reduced working gas flow, the discharge is stabilized by the magnetic field of the coil; the related experimental findings such as significantly increased plasma density and range as well as higher charge carrier energies in the external plasma are extensively proved by spatially resolved Langmuir probe measurements, optical emission spectroscopy, and energy-resolved ion mass spectrometry. Furthermore, the results are correlated to the conditions within the cathode tube by solving the current and heat balance equations. Besides argon, typical reactive gases used in vacuum coating are examined in the hollow cathode plasma, too. First, nitrogen and oxygen, which are applied in PVD (physical vapor deposition) processes for the deposition of oxide and nitride layers, are ionized, dissociated, and excited by plasma processes. In the case of practical application, this plasma activation leads to improved film properties. Second, acetylene is used as a precursor for PECVD (plasma-enhanced chemical vapor deposition) of amorphous hydrogenated carbon films, e.g. for tribological or biocompatible applications. Acetylene is cracked by electron and ion scattering in the plasma providing film-forming species to be deposited on the substrate. The deposition rate as well as the polymeric, graphitic, or diamond-like properties can be controlled by plasma parameters, a defined substrate bias, and substrate cooling. The hollow cathode-generated acetylene plasma has been characterized by energy-resolved ion mass spectrometry, and the carbon films obtained are analyzed regarding hardness, film composition, and morphology.
4

Development and Testing of a Low-Current Applied-Field Magnetoplasmadynamic Thruster with a Rectangular Discharge Channel

Gondol, Norman, Tajmar, Martin 26 February 2024 (has links)
This study explores the possibility of miniaturizing magnetoplasmadynamic thrusters (MPDTs) to significantly lower power and discharge current levels compared to most conventional MPDTs. A design alternative for MPDTs using a discharge channel with a rectangular cross-section is presented that enables the implementation of strong external magnetic fields to increase the applied-field Lorentz force. The thruster concept uses heaterless calcium aluminate electride (C12A7:e-) hollow cathodes as the electron source. A prototype of the concept intended for the low-amp current range generates thrust in the low millinewton range with a specific impulse ranging between 400 s and 1200 s at power levels below 500 W but shows high thermal power losses to the anode. A further miniaturized version of the concept intended for the sub-amp current range is thermally more sustainable but requires high mass flow rates to achieve a stable discharge, limiting the achievable specific impulse.
5

Plasmaphysikalische Charakterisierung einer magnetfeldgestützten Hohlkathoden-Bogenentladung und ihre Anwendung in der Vakuumbeschichtung

Zimmermann, Burkhard 19 December 2012 (has links)
Die vorliegende Dissertation behandelt Charakterisierung, Modellbildung sowie Anwendung einer magnetfeldgestützten Hohlkathoden-Bogenentladung. Hohlkathoden sind seit den 1960er Jahren Gegenstand grundlagen- sowie anwendungsorientierter Forschung und werden seit 20 Jahren am Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik für die Anwendung auf dem Gebiet der Vakuumbeschichtung weiterentwickelt. Ziel dieser Arbeit ist es, die technologischen Fortschritte physikalisch zu verstehen und gezielte Weiterentwicklungen für spezifische Einsatzgebiete zu ermöglichen. In der untersuchten Hohlkathodenbauform ist das aus Tantal bestehende, vom Arbeitsgas Argon durchströmte Kathodenröhrchen koaxial von einer Ringanode sowie von einer Magnetfeldspule umgeben. Die Entladung wird durch Hochspannungspulse gezündet, worauf sich ein diffuser Bogen im Röhrchen (internes Plasma) ausbildet. Das Röhrchen wird von Plasmaionen auf hohe Temperaturen geheizt, die eine thermionische Emission von Elektronen ermöglichen, welche das Plasma speisen. Das technologisch nutzbare externe Plasma wird im Vakuumrezipienten durch Wechselwirkung der Gasteilchen mit Strahlelektronen aus der Kathode erzeugt. Bei starker Reduktion des Arbeitsgasflusses wird die Entladung durch das Magnetfeld der Spule stabilisiert. Der experimentelle Befund, dass dadurch Plasmadichte und -reichweite sowie ggf. die Ladungsträgerenergien im Rezipienten aufgrund des intensiveren Elektronenstrahls wesentlich gesteigert werden können, wird durch ortsaufgelöste Langmuir-Sondenmessung, optische Emissionsspektroskopie und energieaufgelöste Massenspektrometrie ausführlich belegt und nach der Lösung von Strom- und Wärmebilanzgleichungen durch die Verhältnisse im Kathodenröhrchen begründet. Neben Argon werden auch typische Reaktivgase der Vakuumbeschichtung im Hohlkathodenplasma betrachtet: zum einen Stickstoff und Sauerstoff, die in reaktiven PVD-Prozessen (physikalische Dampfphasenabscheidung) zur Beschichtung mit Oxid- bzw. Nitridschichten zum Einsatz kommen und durch Ionisation, Dissoziation und Anregung im Hohlkathodenplasma verbesserte Schichteigenschaften ermöglichen; zum anderen Azetylen, das bei PECVD (plasmagestützte chemische Dampfphasenabscheidung) von amorphen wasserstoffhaltigen Kohlenstoffschichten z. B. für tribologische oder biokompatible Beschichtungen genutzt wird. Azetylen wird durch Streuprozesse mit Elektronen und Ionen im Plasma aufgespalten, wodurch schichtbildende Spezies erzeugt werden, die am Substrat kondensieren. Durch die Wahl der Plasmaparameter sowie durch abgestimmte Substratbiasspannung und Substratkühlung lassen sich die Beschichtungsrate einstellen sowie polymer-, graphit- oder diamantartige Eigenschaften erzielen. Neben der Plasmadiagnostik mittels energieaufgelöster Massenspektrometrie werden die erzeugten Kohlenstoffschichten vorgestellt und hinsichtlich Härte, Zusammensetzung und Morphologie analysiert. / In the present thesis, characterization, modeling and application of a magnetically enhanced hollow cathode arc discharge are presented. Since the 1960s, hollow cathodes are being studied in basic and applied research. At Fraunhofer Institute for Electron Beam and Plasma Technology, further development concerning the application in vacuum coating technology has been carried out for about twenty years. The present work targets on physically understanding the technological progress in order to enable specific further development and application. In the investigated hollow cathode device, a ring-shaped anode and a magnetic field coil are arranged coaxially around the tantalum cathode tube, which is flown through by argon as the working gas. The discharge is ignited by high voltage pulses establishing a diffuse arc within the cathode tube (internal plasma). The cathode is being heated by the plasma ions to high temperatures, which leads to thermionic emission of electrons sustaining the plasma. The external plasma in the vacuum chamber, which can be used for technological applications, is generated by collisions of gas atoms with beam electrons originating from the cathode. In the case of strongly reduced working gas flow, the discharge is stabilized by the magnetic field of the coil; the related experimental findings such as significantly increased plasma density and range as well as higher charge carrier energies in the external plasma are extensively proved by spatially resolved Langmuir probe measurements, optical emission spectroscopy, and energy-resolved ion mass spectrometry. Furthermore, the results are correlated to the conditions within the cathode tube by solving the current and heat balance equations. Besides argon, typical reactive gases used in vacuum coating are examined in the hollow cathode plasma, too. First, nitrogen and oxygen, which are applied in PVD (physical vapor deposition) processes for the deposition of oxide and nitride layers, are ionized, dissociated, and excited by plasma processes. In the case of practical application, this plasma activation leads to improved film properties. Second, acetylene is used as a precursor for PECVD (plasma-enhanced chemical vapor deposition) of amorphous hydrogenated carbon films, e.g. for tribological or biocompatible applications. Acetylene is cracked by electron and ion scattering in the plasma providing film-forming species to be deposited on the substrate. The deposition rate as well as the polymeric, graphitic, or diamond-like properties can be controlled by plasma parameters, a defined substrate bias, and substrate cooling. The hollow cathode-generated acetylene plasma has been characterized by energy-resolved ion mass spectrometry, and the carbon films obtained are analyzed regarding hardness, film composition, and morphology.

Page generated in 0.06 seconds