• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Separace aerosolových částic na polymerních membránách / Separation of aerosol particles using polymeric membranes

Morcinek, Tomáš January 2021 (has links)
This diploma thesis deals with the separation of aerosol particles on membranes from polypropylene hollow fibers. As a source of particles, a desktop 3D printer using polymer filaments was used. Filtration efficiency and a pressure drop on a hollow polypropylene fiber membrane and a high efficiency particulate filter (HEPA filter) were monitored during filtration of particles from 3D print using filaments of acrylonitrile butadiene styrene, acrylonitrile styrene acrylate, polylactic acid and polyethylene terephthalate glycol at nearly the same air flow. The results achieved by both filer media are then compared and discussed. The results show that the hollow fiber membrane achieves better filtration efficiency at higher particle concentrations, while using the less emitting materials, the efficiency of the HEPA filter was higher or the same. The total filtration efficiency calculated from all experiments with all filaments was higher for the hollow fiber membrane with higher pressure drop at the same time.
22

Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

Gilmore, Kevin R. 17 September 2008 (has links)
Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewater treatment system, the first part of the research investigated oxygen transfer characteristics of the HFMBR in clean water conditions and with actively growing biofilm. A mechanistic model for oxygen concentration and flux as a function of length along the non-porous membrane fibers that comprise the HFMBR was developed based on material properties and physical dimensions. This model reflects the diffusion mechanism of non-porous membranes; namely that oxygen follows a sorption-dissolution-diffusion mechanism. This is in contrast to microporous membranes in which oxygen is in the gas phase in the fiber pores up to the membrane surface, resulting in higher biofilm pore liquid dissolved oxygen concentrations. Compared to offgas oxygen analysis from the HFMBR while in operation with biofilm growing, the model overpredicted mass transfer by a factor of approximately 1.3. This was in contrast to empirical mass transfer coefficient-based methods, which were determined using either bulk aqueous phase dissolved oxygen (DO) concentration or the DO concentration at the membrane-liquid interface, measured with oxygen microsensors. The mass transfer coefficient determined with the DO measured at the interface was the best predictor of actual oxygen transfer under biofilm conditions, while the bulk liquid coefficient underpredicted by a factor of 3. The mechanistic model exhibited sensitivity to parameters such as the initial lumen oxygen concentration (at the entry to the fiber) and the diffusion coefficient and partitioning coefficients of oxygen in the silicone membrane material. The mechanistic model has several advantages over empirical-based methods. Namely, it does not require experimental determination of KL, it is relatively simple to solve without the use of advanced mathematical software, and it is based upon selection of the membrane-biofilm interfacial DO concentration. The last of these is of particular importance when designing and operating HFMBR systems with redox (aerobic/anoxic/anaerobic) stratification, because the DO concentration will determine the nature of the microenvironments, the microorganisms present, and the metabolisms that occur. During the second phase of the research, the coupling of two autotrophic metabolisms, partial nitrification to nitrite (nitritation) and anaerobic ammonium oxidation, was demonstrated in a single HFMBR. The system successfully treated a high-strength nitrogen wastewater intended to mimic a urine stream from such sources as extended space missions. For the last 250 days of operation, operating with an average oxygen to ammonia flux (J<sub>O₂</sub>/J<sub>NH₄⁺</sub>) of 3.0 resulted in an average nitrogen removal of 74%, with no external organic carbon added. Control of nitrite-oxidizing bacteria (NOB) presented a challenge that was addressed by maintaining the J<sub>O₂</sub>/J<sub>NH₄⁺</sub> below the stoichiometric threshold for complete nitrification to nitrate (4.57 g O₂ / g NH₄⁺). The DO-limiting condition resulted in formation of harmful gaseous emissions of nitrogen oxides (NO, N2O), which could not be prevented by short-term control strategies. Controlling JO2/JNH4+ prevented NOB proliferation long enough to allow an anaerobic ammoniaoxidizing bacteria (AnaerAOB) population to develop and be retained for >250 days. Addition of a supplemental nutrient solution may have contributed to the growth of AnaerAOB by overcoming a possible micronutrient deficiency. Disappearance of the gaseous nitrogen oxide emissions coincided with the onset of anaerobic ammonium oxidation, demonstrating a benefit of coupling these two autotrophic metabolisms in one reactor. Obvious differences in biofilm density were evident across the biofilm depth, with a region of low density in the middle of the biofilm, suggesting that low cell density or exocellular polymeric substances were primarily present in this region, Microbial community analysis using fluorescence in situ hybridization (FISH) did not reveal consistent trends with respect to length along the fibers, but radial stratification of aerobic ammonia-oxidizing bacteria (AerAOB), NOB, and AnaerAOB were visible in biofilm section samples. AerAOB were largely found in the first 25% of the biofilm near the membrane, AnaerAOB were found in the outer 30%, and NOB were found most often in the mid-depth region of the biofilm. This community structure demonstrates the importance of oxygen availability as a determinant of how microbial groups spatially distribute within an HFMBR biofilm. The combination of these two aspects of the research, predictive oxygen transfer capability and the effect of oxygen control on performance and populations, provides a foundation for future application of HFMBR technology to a broad range of wastewaters and treatment scenarios. / Ph. D.
23

Mathematical Modeling for Nitrogen Removal via a Nitritation: Anaerobic Ammonium Oxidation-Coupled Biofilm in a Hollow Fiber Membrane Bioreactor and a Rotating Biological Contactor

Capuno, Romeo Evasco 27 September 2007 (has links)
Mathematical models of a nitritation: anaerobic ammonia oxidation (anammox)-coupled biofilm in a counter-diffusion hollow fiber membrane bioreactor (HFMBR) and a nitritation: anammox-coupled biofilm in a co-diffusion rotating biological contactor (RBC) were developed and implemented using AQUASIM. Four different start-up scenarios on the nitritation: anammox-coupled biofilm in an HFMBR were investigated. The supply of oxygen was simulated with the flow through the lumen of the hollow fiber membrane. For the four scenarios, two scenarios investigated the start-up when nitrite was supplied in the feed while the other two scenarios investigated when the source of nitrite was through nitritation only. The results showed that the presence of nitrite in the feed facilitated the start-up of the reactor. In addition, the results also showed that increasing oxygen flux through the membrane up to a certain ratio of ammonia flux with oxygen flux affected reactor performance by improving nitrogen removal and reducing start up time. For the nitritation: anammox-coupled biofilm in an RBC, four different process options were investigated: the number of reactors, the initial anammox (AnAOB) biomass fraction, the bulk oxygen concentration and the maximum biofilm thickness. Modeling results revealed that the steady state total nitrogen removal in RBC reactors in series occurred primarily in the first and second reactors. It is concluded that the number of reactors in series dictates the effluent performance and, therefore, this number can be selected depending upon the desired total nitrogen removal. Simulation results also revealed that increasing the initial AnAOB biomass fraction from 0.01% to 1.0% had no effect in the steady state nitrogen removal but had an effect in the required time to reach the steady state total nitrogen removal and the maximum biofilm thickness. Modeling results of the third process option showed that increasing the bulk oxygen concentration in the reactor from 0.2 g/m3 to 5 g/m3 linearly increased the steady state total nitrogen removal and reduced the time to reach the maximum biofilm thickness. Beyond 5 g/m3, steady state total nitrogen removal decreased. In addition, simulation results revealed that the thicker biofilm clearly showed a more linear correlation between the increase in bulk oxygen concentration and the increase in the steady state total nitrogen removal within a range of bulk oxygen concentrations. The results showed that RBC performance could be controlled by several process options: the number of reactors in series, initial biomass fraction, the bulk oxygen concentration and the maximum biofilm thickness. The mathematical modeling results for the HFMBR and RBC have shown that both have potential as carriers for nitritation: anammox-coupled biofilms targeted at the removal of nitrogen in the wastewater. / Master of Science
24

Experimental Studies on CO2 Capture Using Absorbent in a Polypropylene Hollow Fiber Membrane Contactor

Lu, Yuexia January 2011 (has links)
In recent years, membrane gas absorption technology has been considered as one of the promising alternatives to conventional techniques for CO2 capture due to its favorable mass transfer performance. As a hybrid approach of chemical absorption and membrane separation, it exhibits a number of advantages, such as operational flexibility, compact structure, high surface-area-to-volume ratio, linear scale up, modularity and predictable performance. One of the main challenges of membrane gas absorption technology is the membrane wetting by absorbent over prolonged operating time, which may significantly decrease the mass transfer coefficients of the membrane module. In this thesis, the experimental was set up to investigate the dependency of CO2 removal efficiency and mass transfer rate on various operating parameters, such as the gas and liquid flow rates, absorbent type and concentration and volume fraction CO2 at the feed gas inlet. In addition, the simultaneous removal of SO2 and CO2 was investigated to evaluate the feasibility of simultaneous desulphurization and decarbonization in the same membrane contactor. During 14 days of continuous operation, it was observed that the CO2 mass transfer rate decreased significantly following the operating time, which was attributed to partial membrane wetting. To better understand the wetting mechanism of membrane pores during their prolonged contact with absorbents, immersion experiments for up to 90 days were carried out. Various membrane characterization methods were used to illustrate the wetting process before and after the membrane fibers were exposed to the absorbents. The characterization results showed that the absorbent molecules diffused into the polypropylene polymer during the contact with the membrane, resulting in the swelling of the membrane. In addition, the effects of operating parameters such as immersion time and absorbent type on the membrane wetting were investigated in detail. Finally, based on the analysis results, methods to smooth the membrane wetting were discussed. It was suggested that improving the hydrophobicity of polypropylene membrane by surface modification may be an effective way to improve the long-term operating performance of membrane contactors. Therefore, the polypropylene hollow fibers were modified by depositing a thin superhydrophobic coating on the membrane surface to improve their hydrophobicity. The mixture of cyclohexanone and methylethyl ketone was considered as the best non-solvent to achieve the fiber surface with good homogeneity and acceptably high hydrophobicity. In the long-period operation, the modified membrane contactor exhibited more stable and efficient performance than the untreated one. Hence, surface treatment provides a feasibility of improving the system stability for CO2 capture from the view of long-term operation. / En av de tekniker som under senare framhållits som ett lovande alternativ till konventionell CO2-avskiljning är membran-gas-absorptionstekniken på grund av god prestanda vad gäller masstransport. Det blandade angreppssättet med både kemisk absorption och membranseparation har en rad fördelar, såsom driftflexibilitet, kompakt konstruktion, högt yt-volymsförhållande, linjär uppskalning, modularitet och förutsägbar prestanda. En av de viktigaste utmaningarna för membran-gas-absorptionstekniken är vätningen av membranet med absorbenten under långa drifttider, vilket väsentligt kan minska membranmodulens masstransportkoefficienter.  I avhandlingen har en rad olika driftparametrars påverkan på CO2-reningsgraden och massöverföringshastigheten undersökts. Driftparametrar inkluderar gas- och vätskeflöden, typ av absorbent och koncentration och volymfraktion av CO2 vid gasinloppet. Avskiljning av SO2 och CO2 har dessutom undersökts för att utvärdera möjligheten att samtidigt, i samma membranenhet, avlägsna svavel och kol. Under 14 dagars kontinuerlig drift konstaterades det att massöverföringshastigheten för CO2 minskade avsevärt med drifttiden, vilket hänfördes till partiell vätning av membranet.   För att bättre förstå mekanismerna för vätning av membranporer under långvarig kontakt med absorbenter genomfördes doppningsexperiment i upp till 90 dagar. Olika metoder för karakterisering av membran användes för att illustrera vätningsprocessen före och efter det att membranfibrerna exponerades för absorbenterna. Resultaten av karakteriseringen visade att absorbentmolekylerna spreds in i polypropenpolymeren under kontakten med membranet, vilket ledde till att membranet svällde. Dessutom undersöktes effekterna av driftsparametrar såsom nedsänkningstid och typ av absorbent i detalj. Slutligen, på grundval av analysresultaten, diskuterades metoder för att underlätta vätningen av membran. Att förbättra polypropylenmembranets hydrofobicitet genom modifiering av ytan föreslogs kunna vara ett effektivt sätt att förbättra den långsiktiga driftprestandan för membranenheter. Därför modifierades de ihåliga fibrerna av polyproylen med ett tunt lager av en superhydrofob beläggning på membranets yta för att förbättra hydrofobiciteten. En blandning av cyklohexanon och metyletylketon ansågs vara det bästa icke-lösningsmedlet för att få en fiber yta med god homogenitet och acceptabelt hög hydrofobicitet. Under lång driftperiod, uppvisade den modifierade membranenheten stabilare och effektivare prestanda än den obehandlade. Därför erbjuder ytbehandling en möjlighet till att förbättra systemets stabilitet för CO2-avskiljning när det gäller långsiktig drift. / VR-SIDA Swedish Research Links Programme
25

Application of Polymeric Hollow-Fiber Membranes in Air Filtration / Application of Polymeric Hollow-Fiber Membranes in Air Filtration

Bulejko, Pavel January 2019 (has links)
Membrány z dutých vláken jsou široce využívány v aplikacích týkajících se úpravy kapalin jako např. při čištění odpadních vod, v membránových kontaktorech a bioreaktorech, membránové destilaci apod. I když jsou často využívány při separacích směsí plynů, je jejich použití pro mechanickou filtraci aerosolů velmi vzácné. Tato práce se zabývá filtrací vzduchu pomocí polypropylenových membrán z dutých vláken včetně jejich filtrační účinnosti, tlakových ztrát a také zanášením při dlouhodobé filtraci. Filtrační účinnost byla proměřena za použití různých aerosolů jako TiO2 a síran amonný. Tlakové ztráty byly měřeny při různých konfiguracích, tj. různé filtrační ploše a průměru vlákna membrány. Zanášení membrán bylo testováno použitím normovaného prachu definovaného normou ANSI/ASHRAE 52.2. Predikční modely pro filtrační účinnost a permeabilitu/tlakovou ztrátu membrány byly aplikovány na parametry membrán z dutých vláken a porovnány. Tyto membrány mají velikost pórů kolem 90 nm a poměrně nízkou porositu a tím vysoký potenciál pro separaci nanočástic ze vzduchu. Dále byla provedena analýza filtračního koláče a vyhodnocení energetických nároků a porovnány s teoretickými modely. V závěru práce je nastíněn odhad ceny životního cyklu při filtraci pomocí těchto membrán.

Page generated in 0.0734 seconds