Spelling suggestions: "subject:"holonomic kuantum computation"" "subject:"holonomic kuantum omputation""
1 |
Time-optimal holonomic quantum computationO. Alves, Gabriel January 2022 (has links)
A three-level system can be used in a Λ-type configuration in order to construct auniversal set of non-adiabatic quantum gates through the use of non-Abelian non-adiabatic geometrical phases. Such construction allows for high-speed operation times which diminish the effects of decoherence. This might be, however, accompanied by a breakdown of the validity of the rotating wave approximation (RWA) due to the comparable timescale between the counter-rotating terms and the pulse length, which greatly affects the dynamics. Here we investigate the trade-off between dissipative effects and the RWA validity, obtaining the optimal regime for the operation of the holonomic quantum gates.
|
2 |
Quantum Information Processing with Color Center Qubits: Theory of Initialization and Robust ControlDong, Wenzheng 21 May 2021 (has links)
Quantum information technologies include secure quantum communications and ultra precise quantum sensing that are significantly more efficient than their classical counterparts. To enable such technologies, we need a scalable quantum platform in which qubits are con trollable. Color centers provide controllable optically-active spin qubits within the coherence time limit. Moreover, the nearby nuclear spins have long coherence times suitable for quantum memories. In this thesis, I present a theoretical understanding of and control protocols for various color centers. Using group theory, I explore the wave functions and laser pumping-induced dynamics of VSi color centers in silicon carbide. I also provide dynamical decoupling-based high-fidelity control of nuclear spins around the color center. I also present a control technique that combines holonomic control and dynamically corrected control to tolerate simultaneous errors from various sources. The work described here includes a theoretical understanding and control techniques of color center spin qubits and nuclear spin quantum memories, as well as a new platform-independent control formalism towards robust qubit control. / Doctor of Philosophy / Quantum information technologies promise to offer efficient computations of certain algorithms and secure communications beyond the reach of their classical counterparts. To achieve such technologies, we must find a suitable quantum platform to manipulate the quantum information units (qubits). Color centers host spin qubits that can enable such technologies. However, it is challenging due to our incomplete understanding of their physical properties and, more importantly, the controllability and scalability of such spin qubits. In this thesis, I present a theoretical understanding of and control protocols for various color centers. By using group theory that describes the symmetry of color centers, I give a phenomenological model of spin qubit dynamics under optical control of VSi color centers in silicon carbide. I also provide an improved technique for controlling nuclear spin qubits with higher precision. Moreover, I propose a new qubit control technique that combines two methods - holonomic control and dynamical corrected control - to provide further robust qubit control in the presence of multiple noise sources. The works in this thesis provide knowledge of color center spin qubits and concrete control methods towards quantum information technologies with color center spin qubits.
|
3 |
Fases geométricas, quantização de Landau e computação quâantica holonômica para partículas neutras na presença de defeitos topológicosBakke Filho, Knut 06 August 2009 (has links)
Made available in DSpace on 2015-05-14T12:14:06Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1577961 bytes, checksum: c71d976d783495df566e0fa6baadf8ca (MD5)
Previous issue date: 2009-08-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We start this work studying the appearance of geometric quantum phases as in the relativistic
as in the non-relativistic quantum dynamics of a neutral particle with permanent
magnetic and electric dipole moment which interacts with external electric and magnetic
fields in the presence of linear topological defects. We describe the linear topological
defects using the approach proposed by Katanaev and Volovich, where the topological
defects in solids are described by line elements which are solutions of the Einstein's equations
in the context of general relativity. We also analyze the in
uence of non-inertial
effects in the quantum dynamics of a neutral particle using two distinct reference frames
for the observers: one is the Fermi-Walker reference frame and another is a rotating frame.
As a result, we shall see that the difference between these two reference frames is in the
presence/absence of dragging effects of the spacetime which makes its in
uence on the
phase shift of the wave function of the neutral particle. In the following, we shall use our
study of geometric quantum phases to make an application on the Holonomic Quantum
Computation, where we shall show a new approach to implement the Holonomic Quantum
Computation via the interaction between the dipole moments of the neutral particle
and external fields and the presence of linear topological defects. Another applications for
the Holonomic Quantum Computation is based in the structure of the topological defects
in graphene layers. In the presence of topological defects, a graphene layer shows two
distinct phase shifts: one comes from the mix of Fermi points while the other phase shift
comes from the topology of the defect. To provide a geometric description for each phase
shift in the graphene layer, we use the Kaluza-Klein theory where we establish that the
extra dimension describes the Fermi points in the graphene layer. Hence, we can implement
the Holonomic Quantum Computation through the possibility to build cones and
anticones of graphite in such way we can control the quantum
uxes in graphene layers.
In the last part of this work, we study the Landau quantization for neutral particles as in
the relativistic dynamics and non-relativistic dynamics. In the non-relativistic dynamics,
we study the Landau quantization in the presence of topological defects as in an inertial
as in a non-inertial reference frame. In the relativistic quantum dynamics, we start our
study with the Landau quantization in the Minkowisky considering two different gauge
fields. At the end, we study the relativistic Landau quantization for neutral particles in
the Cosmic Dislocation spacetime. / Neste trabalho estudamos inicialmente o surgimento de fases geometricas nas dinâmicas quânticas relativística e não-relativística de uma partícula neutra que possui momento de
dipolo magnético e elétrico permanente interagindo com campos elétricos e magnéticos externos
na presença de defeitos topológicos lineares. Para descrevermos defeitos topológicos
lineares usamos a aproximação proposta por Katanaev e Volovich, onde defeitos lineares em sólidos são descritos por elementos de linha que são soluções das equações de Einstein
no contexto da relatividade geral. Analisamos também a
inuência de efeitos não-inerciais na dinâmica quântica de uma partícula neutra em dois tipos distintos de referenciais para
os observadores: um é o referencial de Fermi-Walker e outro é um referencial girante.
Vemos que a diferença entre dois referenciais está na presença/ausência de efeitos de arrasto
do espaço-tempo que irá influenciar diretamente na mudança de fase na funçãao de
onda da partícula neutra. Em seguida, usamos nosso estudo de fases geométricas para
fazer aplicações na Computação Quântica Holonômica onde mostramos uma nova maneira de implementar a Computação Quântica Holonômica através da interação entre momentos
de dipolo e campos externos e pela presença de defeitos topológicos lineares. Outra
aplicação para a Computação Quântica Holonômica está baseada na estrutura de defeitos
topológicos em um material chamado grafeno. Na presença de defeitos topológicos lineares,
esse material apresenta duas fases quânticas de origens distintas: uma da mistura
dos pontos de Fermi e outra da topologia do defeito. Para dar uma descrição geométrica para a origem de cada fase no grafeno usamos a Teoria de Kaluza-Klein, onde a dimensão extra sugerida por esta teoria descreve os pontos de Fermi no grafeno. Portanto, a implementação da Computação Quântica Holonômica no grafeno está baseada na possibilidade
de construir cones e anticones de grafite de tal maneira que se possa controlar os fluxos
quânticos no grafeno. Na última parte deste trabalho estudamos a quantização de Landau
para partículas neutras tanto na dinâmica não-relativística quanto na dinâmica relativística. Na dinâmica não-relativítica, estudamos a quantização de Landau na presença
de defeitos em um referecial inercial e, em seguida, em um referencial nãoo-inercial. Na
dinâmica relativística, estudamos inicialmente a quantização de Landau no espaço-tempo
plano em duas configurações de campos diferentes. Por fim, estudamos a quantização de
Landau relativística para partículas neutras no espaço-tempo da deslocação cósmica.
|
Page generated in 0.0838 seconds