• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ομογενείς γεωδαισιακές καμπύλες σε πολλαπλότητες σημαιών

Σουρής, Νικόλαος Παναγιώτης 28 February 2013 (has links)
Στην παρούσα εργασία θα μελετήσουμε κάποιες συνθήκες υπό τις οποίες συγκεκριμένες κλάσεις πολλαπλοτήτων σημαιών (flag manifolds) δέχονται ομογενείς ισογεωδαισιακές καμπύλες. Μια λεία πολλαπλότητα M διάστασης n είναι ένας Hausdorff και 2ος αριθμήσιμος τοπολογικός χώρος, τοπικά ομοιομορφικός με έναν Ευκλείδειο χώρο διάστασης n, εφοδιασμένος με μια διαφορική δομή. Ένα παράδειγμα πολλαπλότητας διάστασης 2 είναι μια επιφάνεια του χώρου. Ο εφοδιασμός μιας λείας πολλαπλότητας M με μια μετρική g στον εφαπτόμενο χώρο κάθε σημείου της επιτρέπει την εισαγωγή γεωμετρικών ιδιοτήτων στην M (μήκη καμπυλών, καμπυλότητα κλπ.). Μια σημαντική κλάση καμπυλών σε μια πολλαπλότητα M είναι οι γεωδαισιακές καμπύλες που έχουν την ιδιότητα να ελαχιστοποιούν την απόσταση μεταξύ δύο αρκετά κοντινών σημείων της M. Επιπλέον, δεδομένου ενός σημείου p μιας πολλαπλότητας M και εφαπτόμενου διανύσματος v στο p, υπάρχει μοναδική γεωδαισιακή καμπύλη διερχόμενη από το p με κατεύθυνση το v. Μια ομάδα Lie G είναι μια λεία πολλαπλότητα με δομή ομάδας τέτοια ώστε οι πράξεις του πολλαπλασιασμού και αντιστροφής να είναι διαφορίσιμες. Μια τέτοια ομάδα είναι και η μοναδιαία σφαίρα. Βασικό χαρακτηριστικό των ομάδων Lie είναι ότι η γεωμετρία τους παραμένει αναλλοίωτη σε όλα τα σημεία τους. Συνεπώς, η μελέτη της γεωμετρίας μιας ομάδας Lie G ανάγεται στη μελέτη της γεωμετρίας σε μια περιοχή του ουδετέρου στοιχείου της e και συγκεκριμένα, στη μελέτη της άλγεβρας Lie της G, δηλαδή τον εφαπτόμενο διανυσματικό χώρο της G στο e. Οι πολλαπλότητες που γενικεύουν αυτή την ιδιότητα ονομάζονται ομογενείς χώροι. Ένας ομογενής χώρος είναι μια λεία πολλαπλότητα M στην οποία δρα με συγκεκριμένο τρόπο μια ομάδα Lie G. Η G ορίζει μια γεωμετρία στην M που είναι αναλλοίωτη σε κάθε σημείο της M. Αυτό επιτυγχάνεται με τον ορισμό των G-αναλλοίωτων μετρικών στον ομογενή χώρο M. Στην περίπτωση που η G είναι συμπαγής και ημιαπλή ο ομογενής χώρος ονομάζεται πολλαπλότητα σημαιών. Αποδεικνύεται ότι κάθε ομογενής χώρος M δέχεται ομογενείς γεωδαισιακές καμπύλες, δηλαδή γεωδαισιακές που αποτελούν τροχιές, μέσω της δράσης της G στη M, μιας κατηγορίας υποομάδων της G που ονομάζονται μονοπαραμετρικές υποομάδες. Στην παρούσα εργασία θα μελετήσουμε την ύπαρξη ισογεωδαισιακών καμπυλών σε πολλαπλότητες σημαιών, δηλαδή καμπυλών που είναι ομογενείς γεωδαισιακές ανεξάρτητα της G-αναλλοίωτης μετρικής που θα ορίσουμε στην πολλαπλότητα. / In this thesis we study homogeneous geodesics on certain classes of flag manifolds.

Page generated in 0.0687 seconds