• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 24
  • 23
  • 10
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 162
  • 162
  • 67
  • 45
  • 41
  • 41
  • 37
  • 33
  • 32
  • 30
  • 23
  • 23
  • 22
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Uso do silenciamento gênico mediado por RNA de interferência e de TAL effector nucleases para aumento de eventos gene targeting em células de cão / Use of RNAi-mediated gene silencing and TAL effector nucleases to enhance gene targeting events in dog cells

Raquel de Mello e Pinho 25 August 2014 (has links)
A inserção de DNA exógeno no genoma hospedeiro é conseguida principalmente através da utilização de vias de reparo como a junção de pontas não homólogas, que possui caráter aleatório, e a recombinação homóloga, que possibilita o gene targeting. Algumas ferramentas como as TAL Effector Nucleases (TALENs) e o RNA interferência (RNAi) podem ser utilizadas para aumentar a taxa de integração específica e assim melhorar a eficiência e o direcionamento da edição gênica. Nesse trabalho utilizamos o silenciamento gênico mediano por short interference RNA (siRNA) para inibição temporária dos genes ATF7IP uma metiltrasferase, EP300 uma acetiltransferase e KU70 (NHEJ) e um par de TALENs complementares a uma região do gene da distrofina canina. Células Caninas MDCK I foram transfectadas por lipofectamina 2000 (Invitrogen) com 320pmol de siRNAs para ATF7IP e Ep300; e 64 pmol do SiRNA para KU70 em diferentes grupos, 40 horas depois as células foram transfectadas com 15 μg vetor molde derivado do pEGFP-N1 (Clonatech) e com 10 μg dos RNAm das TALENs. A seleção se deu em meio DMEM high com 600μg/ mL de G418 (Lonza) por 14-16 dias. As colônias coletadas através de biópsias foram analisadas por Polimerase Chain Reaction e sequenciamento gênico. Três pares de primers foram utilizados; um controle endógeno (GAPDH), um controle interno do inserto (Neo qPCR) e um para confirmação da recombinação homóloga (DMD3). Os grupos apresentaram grande variação na taxa de mortalidade celular e consequentemente no número de colônias: Com o grupo ATF7IP+Vetor (648c) apresentando maior número de colônias e o grupo EP300+Ku70+Vetor+TALENs o menor (1c). A maior taxa de recombinação ocorreu nos grupos no grupo ATF7IP +Ku70+Vetor+TALENs com 40% das células positivas para neomicina apresentado o evento gene targeting, um aumento considerável na taxa de recombinação quando comparada a porcentagem de 3,1% do controle transfectado somente com o vetor molde. Mostrando que o uso conjunto das TALENs com siRNAs foi um sucesso para o aumento de eventos de edição gênica direcionada. / The insertion of exogenous DNA into a host genome is achieved primarily through the use of DNA repair pathways such as Non-Homologous End Joining (NHEJ) and the Homologous Recombination (HR). The integration by NHEJ has a random feature and is much more common than HR insertions, which are more likely to produce gene targeting events . TAL effector nucleases (TALENs) and RNA interference (RNAi) can be used to increase the rate of specific integration and thus improving the efficiency of gene editing. In this work, we used short interference RNA (siRNA)-mediated gene silencing for transient inhibition of genes ATF7IP (implicated in histone methylation), EP300 (acetyltransferase) and Ku70 (essential to NHEJ) and a pair of TALENs RNAm complementary to canine muscle dystrophin (DMD) gene. MDCK I Canine Cells were transfected by lipofectamine 2000 (Invitrogen) with 320 pmol of siRNAs for ATF7IP and EP300; and 64 pmol of siRNA for Ku70 in different groups. After 40 hours cells were transfected with 15 μg of a vector derived from pEGFP- N1 (Clontech) containing two regions homologous to the canine DMD gene (left arm length: 873 bp and right arm length: 1370 bp) and 10 μg of TALEN mRNA. The cell selection was achieved with DMEM high glucose with 600μg/ml G418 for 14-16 days. The colonies collected through biopsies were analyzed by polymerase chain reaction and gene sequencing. Three pairs of primers were used; an endogenous control (GAPDH) , an internal control of the insert (Neo qPCR) and a primer set to confirm the occurrence of homologous recombination events (DMD3). .Groups showed great variation in cell death rate and consequently in the number of colonies: ATF7IP+Vector had highest number of colonies (648c) and the group EP300+Ku70+Vetor+TALENs the lowest one (1c) The highest rate of homologous recombination was in ATF7IP +Ku70+Vetor+TALENs group that had 40% of the neomycin positives cells confirmed as gene targeting events, a considerable increase in the recombination rate compared to the 3.1% in the control group transfected only with the template vector. That shows that the combined use of siRNAs and TALENs was a success for increasing directed gene editing events.
42

Metabolismo de serina: caracterização de serina hidroximetiltransferase de Trypanosoma cruzi. / Metabolism of serine: characterization of serine hydroxymethyltransferase of Trypanosoma cruzi.

Carlos Gustavo Baptista 29 March 2017 (has links)
A doença de Chagas é uma doença causada pelo protozoário parasita Trypanosoma cruzi, que afeta cerca de 10 milhões de pessoas, principalmente nas Américas. O T. cruzi utiliza aminoácidos como importante fonte de energia e em vários processos biológicos como diferenciação, resistência a condições de estresse e invasão de células hospedeiras. A serina está envolvida em muitas vias biosintéticas. Uma das funções relevantes da serina é a formação de compostos C1 para a biossíntese de nucleotídeos. O uso de serina para esse fim é iniciado pela Serina Hidroximetiltransferase, cuja atividade foi detectada em T. cruzi, mas seu papel na biologia do parasita permanece pouco explorado. Neste trabalho, identificamos um gene que codifica uma Serina Hidroximetiltransferase putativa com dupla localização (citoplasmática e mitocondrial). Por recombinação homóloga, obtemos parasitas knockouts heterozigotos nos quais um alelo de SHMT foi substituído pelo gene da neomicina fosfotransferase. Os parasitas knockouts não mostraram diferenças na taxa de crescimento das formas epimastigotas ou na metaciclogênese in vitro. Porém, os parasitas knockouts mostraram uma diminuição significativa tanto no índice de infecção como no número de tripomastigotas liberados de células CHO-K1 infectadas com formas metacíclicas knockout. / Chagas disease is a disorder caused by the protozoa parasite Trypanosoma cruzi, which affects about 10 million people, mainly in the Americas. T. cruzi uses amino acids as an important energy source and in several biological processes such as differentiation, resistance to stress conditions and in the host-cell invasion. Serine is involved in many biosynthetic pathways. One of the relevant functions of serine is the formation of C1 compounds for the biosynthesis of nucleotides. The use of serine for that purpose is initiated by Serine Hydroxymethyltransferase, whose activity was detected in T. cruzi but its role in the biology of parasite remains poorly explored. In this work we identified a putative gene encoding a SHMT with dual localization, cytoplasmic and mitochondrial. We generated a single knockout cell line by homologous recombination in which one allele of SHMT was replaced by the neomycin phosphotransferase gene. Knockout parasites showed no difference in epimastigote growth rate or in in vitro metacyclogenesis. However, knockout parasites showed a significant decrease in both, infection index and in the number of trypomastigotes released from CHO-K1cells infected with knockout metacyclic forms.
43

Adaptations métaboliques de Trypanosoma brucei en réponse à des variations des conditions intra- et extracellulaires / Metabolic adaptations of Trypanosoma brucei in response to changing intra- and extracellular conditions

Wargnies, Marion 13 October 2016 (has links)
Trypanosoma brucei est un parasite protozoaire responsable de la trypanosomiase humaine africaine. Il présente un cycle de vie complexe alternant entre des hôtes mammifères et un vecteur insecte, la mouche tsé-tsé. Au cours de ce cycle, il rencontre des environnements radicalement distincts auxquels il s’adapte en régulant son métabolisme. Nous avons étudié le métabolisme intermédiaire et énergétique de la forme procyclique évoluant dans le tractus digestif de l’insecte vecteur. Dans cet environnement dépourvu de glucose, la néoglucogenèse est cruciale pour la croissance et la survie des parasites car elle permet la synthèse d’hexoses phosphates et en particulier du glucose 6-phosphate qui alimente plusieurs voies de biosynthèse essentielles. Nos travaux confirment ce flux néoglucogénique alimenté par la proline mais aussi par le glycérol. Nous montrons que le glycérol est une source de carbone efficacement métabolisée et préférentiellement utilisée par la forme procyclique à défaut de la proline et même du glucose pour alimenter son métabolisme intermédiaire. Cette situation qu in’a jamais été décrite auparavant met en évidence la répression du glycérol sur le métabolisme du glucose. Nous montrons également que l’enzyme fructose 1,6-biphosphatase(FBPase), spécifique de la néoglucogenèse, n’est pas essentielle à la survie du parasite en conditions dépourvues de glucose indiquant qu’il existe une alternative à cette enzyme.Toutefois, FBPase joue un rôle important dans la virulence de T. brucei dans l’insecte.De plus, nous avons mis en évidence une autre stratégie d’adaptation de T. brucei basée sur des réarrangements génomiques qui peuvent mener à la synthèse de gènes chimères. / Trypanosoma brucei is a protozoan parasite responsible for human African trypanosomiasis. His complex life cycle alternates between mammalian hosts and the insect vector, the tsetsefly. During this cycle, the parasite encounters dissimilar environments and adapts to the sechanging conditions by regulating his metabolism. We have studied intermediate and energetic metabolism of the procyclic form living in the midgut of the insect vector. In this glucose-depleted environment, gluconeogenesis is crucial for growth and viability of the parasites. Indeed, it allows the synthesis of hexoses phosphates and in particular glucose 6-phosphate which feeds several essential biosynthetic pathways. Our work has confirmed the existence of a gluconeogenic flux fed by proline and glycerol. We have shown that glycerol is an efficiently metabolized carbon source and is preferentially used by the procyclic form rather than proline or even glucose. This situation never described before highlights glycerol repression on glucose metabolism. We have also showed that the enzyme fructose 1,6-biphosphatase (FBPase), specific of the gluconeogenesis, is not essential for the viability ofthe parasite in glucose-depleted conditions, suggesting that there is an alternative to this enzyme. However, FBPase plays an important role for virulence of T. brucei in the insect. Moreover, we have showed another adaptation strategy developed by T. brucei which is basedo n genomic rearrangements leading to the synthesis of chimeric genes.
44

Homologous recombination in Bacteriophages, less fidelity for more exchanges / Recombinaison homologue chez les Bactériophages, moins de fidélité pour plus d’échanges

Hutinet, Geoffrey 31 October 2014 (has links)
La diversité des génomes de virus infectant les bactéries, les bactériophages (ou phage en abrégé), est telle qu’il est difficile de les classer de manière satisfaisante, la notion d’espèce elle-même ne faisant pas accord dans la communauté scientifique. A la racine de cette diversité, un des facteurs clé est la recombinaison de l’ADN, qui est élevée chez les bactériophages, et permet des échanges de gènes entre entités parfois fort différentes. Mes travaux se sont centrés sur la recombinaison homologue chez les bactériophages, et en particulier sur la protéine centrale de ce processus, la recombinase. J’ai montré pour deux grands types de recombinases phagiques, de type Rad52 et Sak4, que celles-ci étaient beaucoup moins fidèles dans le processus de recombinaison, comparées à la recombinase bactérienne RecA. De plus, pour Sak4, j’ai observé que cette recombinaison se produisait par appariement simple brin, et qu’elle dépendait entièrement in vivo d’une SSB phagique, dont le gène est situé à proximité du gène sak4 sur le chromosome du phage. Les échanges génétiques sont donc grandement facilités pour les phages contenant ce type de recombinases, mais ils ne sont pas non plus anarchiques : la recombinaison s’observe jusque 22% de divergence, mais deux séquences à 50% de divergence ne peuvent recombiner. Tout se passe donc comme si la notion d’espèce devait être élargie chez les phages par rapport aux bactéries, pour inclure dans un même groupe des génomes portant des traces d’échanges récents de matériel génétique par recombinaison homologue (ce que l’on appelle le mosaïcisme). / The diversity of the viruses infecting bacteria (bacteriophages, or phages for short) is so important that it is difficult to classify them in a pertinent way, and the species notion itself is a matter of debate among specialists. At the root of this diversity, one of the key factors is DNA recombination, which occurs at high levels among phages, and permits gene exchanges among entities that are sometimes very distant. My research has focused on homologous recombination in phages, and in particular on the protein that is key to the process, the recombinase. I have shown, for two different types of recombinases, Rad52-like and Sak4-like, that their fidelity was relaxed, compared to the bacterial recombinase, RecA. Moreover, for Sak4, a protein that had not been studied before, I showed that recombination occurs by single strand annealing, and that it is strictly dependent in vivo on the co-expression of its cognate SSB protein, whose gene is often encoded nearby in phage genomes encoding sak4. Genetic exchanges are therefore greatly facilitated for phages encoding these types of recombinases. Nevertheless, exchanges are not anarchical: recombination is seen up to 22% diverged substrates, but 50% diverged DNA sequences will not recombine. It may be that the species notion should be enlarged for phages, so as to include into a same group all phages exhibiting traces of recent exchanges of genetic material (the so-called mosaicism).
45

Vers la compréhension des mécanismes de réparation de l'ADN chez Streptomyces : identification d'acteurs de la recombinaison / Towards the understanding of DNA repair in streptomyces : identification of DNA recombination players

Zhang, Lingli 23 September 2014 (has links)
Les cassures double brin de l’ADN sont des dommages pouvant engendrer la mort cellulaire. Deux mécanismes majeurs sont impliqués dans leur réparation chez les bactéries : la recombinaison homologue et le Non-Homologous End Joining (NHEJ). Streptomyces est une bactérie modèle pour étudier l'impact relatif des mécanismes de recombinaison sur la structure du génome et son évolution ; le chromosome est en effet caractérisé par sa linéarité, son organisation génétique compartimentée et sa plasticité génomique remarquable. L'objectif de cette recherche est d'identifier les acteurs impliqués dans les mécanismes de réparation des cassures double brin qui restent inconnus chez Streptomyces à ce jour. Concernant la recombinaison homologue, la première étape consiste en une maturation des extrémités d’ADN générées par la cassure. Cette première étape est assurée par un complexe à activité hélicase-nuclease : RecBCD (chez Escherichia coli), AddAB (chez Bacillus subtilis) ou AdnAB (chez les mycobactéries). Une analyse in silico des génomes disponibles de Streptomyces a permis d’identifier chez ces organismes, deux gènes conservés et adjacents, nommés adnA et adnB en raison de leur homologie avec les gènes adnAB récemment identifiés chez les mycobactéries. Les tentatives visant à déléter ces gènes chez Streptomyces ambofaciens et Streptomyces coelicolor ont été infructueuses. Cependant, le fait que leur délétion soit rendue possible par l’ajout d’une copie ectopique du locus sauvage nous a amené à conclure au caractère essentiel d’adnA et adnB chez Streptomyces. La trans-complémentation d’un mutant [delta]recB d’E. coli par le locus adnAB de S. ambofaciens restaure l’activité nucléase cellulaire et la survie en présence ou non d’agent génotoxique, suggérant qu’adnAB code l’homologue fonctionnel de RecBCD d’E. coli. Le rôle central d’adnAB dans la recombinaison homologue et la réplication est discuté. Le mécanisme NHEJ montre une distribution sporadique chez les bactéries et implique les deux protéines Ku et LigD. La protéine Ku se fixe sur les extrémités de l’ADN et recrute la ligase LigD. Cette dernière est une protéine multifonctionnelle présentant, outre une activité ligase, une activité polymérase et parfois une activité nucléase. L’analyse des génomes de Streptomyces a révélé un nombre variable d’homologues de ku (1-3) et d’homologues codant pour l’une ou l’autre des trois activités de LigD. Ces différents gènes définissent deux loci conservés entre espèces de Streptomyces. Chez S. ambofaciens, trois homologues de ku (nommés kuA, kuB et kuC) et deux ligases ATP-dépendantes (nommés ligC et ligD) ont été identifiés. L’exposition de souches déficientes pour ces différents gènes aux agents endommageant l’ADN (la mitomycine C, l’irradiation par faisceau d’électrons) a démontré l’implication de kuA et ligC, deux acteurs conservés, mais aussi des gènes variables kuC et ligD, dans la réparation de l’ADN. Ces résultats ouvrent de nouvelles perspectives pour comprendre le rôle du NHEJ dans l'évolution du génome et la biologie Streptomyces. / Double strand breaks (DSB) constitute the most deleterious form of DNA damage that a bacterial cell can encounter. Two major pathways can carry out DSB repair in bacteria: homologous recombination and Non-Homologous End Joining (NHEJ). Streptomyces is a model bacterium to explore the relative impact of these recombination mechanisms on genome structure and evolution; the chromosome is indeed typified by its linearity, its compartmentalized genetic organization and its remarkable genomic plasticity. The objective of this research is to identify actors involved in DSB repair mechanisms which remain mostly elusive in Streptomyces up to now. The first step of DSB repair by homologous recombination is the resection of broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB and Mycobacterium tuberculosis AdnAB. In silico analysis of Streptomyces genomes allowed to identify homologues for adnA and adnB which constitute a highly conserved locus within the genus. Attempts to disrupt these two genes were unsuccessful in Streptomyces ambofaciens as well as in Streptomyces coelicolor, unless an extra copy of adnAB was inserted in the chromosome. This indicates that AdnA and AdnB are both essential for Streptomyces growth. Complementation of an E. coli [delta]recB mutant by S. ambofaciens adnAB locus restored nuclease activity and cell survival in the presence or absence of DNA damaging agent, strongly suggesting that Streptomyces adnAB encodes a functional homologue of E. coli RecBCD. The key role of adnAB in homologous recombination and DNA replication is discussed. The NHEJ mechanism shows a sporadic distribution in bacteria and is known to involve the two proteins Ku and LigD. The Ku protein binds to the ends of the broken DNA and recruits the ATP-dependent ligase LigD which is a multifunctional protein carrying ligase, polymerase and sometimes nuclease activity. In silico analysis of Streptomyces genomes revealed a complex organization with a variable number of ku homologues (1 to 3) and of homologues encoding one of the three distinct LigD activities. These homologues define two conserved loci. S. ambofaciens possesses 3 ku (named kuA, kuB and kuC) and 2 ATP-dependent ligases (named ligC and ligD). Exposure to DNA damaging agents (mitomycin C, electron beam irradiation) of mutant strains got involved kuA and ligC, two conserved actors, but also variable genes such as kuC and ligD in DNA repair. These results open up new prospects to understand the role of NHEJ in the biology and genome evolution of Streptomyces.
46

Force et couple dans les pinces magnétiques : paysage énergétique de la protéine hRad51 sur ADN double-brin / Force and torque in magnetic tweezers : energy landscape of the protein hRad51 on double-stranded DNA

Atwell, Scott 26 September 2014 (has links)
Hautement conservé, de la bactérie jusqu'à l’Homme, la recombinaison homologue est indispensable à la survie de tout organisme vivant. Chez l’humain, la protéine hRad51 (human Rad51) y joue un rôle clé en s’autoassemblant au site de cassure sur les extrémités simple-brin d’une molécule d’ADN endommagée pour former le filament nucléoprotéique. Ce filament est capable à lui seul d’effectuer la plupart des opérations nécessaires au bon déroulement de la recombinaison homologue; il va permettre la reconnaissance d’homologie, l’appariement des séquences homologues et l’invasion de brins requise pour la synthèse de l’ADN manquant.La recombinaison homologue est un processus complexe impliquant de multiples partenaires. Pour mieux comprendre le rôle du filament nucléoprotéique au sein de la réaction, on se propose d’étudier ce dernier en l’absence de tout partenaire. Plus précisément, on observe le comportement mécanique de filaments hRad51-ADNdb en fonction des conditions chimiques. La formation du filament nucléoprotéique modifie la conformation de l’ADN sur lequel il s’assemble, l’allongeant de 50% et le déroulant de 43% dans le cas d’une molécule double-brin. Les pinces magnétiques sont un outil permettant de contrôler la force et la torsion appliquées à une unique molécule d’ADN double-brin (ADNdb), elles sont donc l’outil idéal pour sonder les propriétés mécaniques de filaments nucléoprotéiques. Le système des pinces magnétiques a été modifié afin de mesurer des paramètres mécaniques précédemment inaccessibles tel que le couple ressenti ou exercé par le filament. Le but de cette thèse a été d’étudier les propriétés mécano-chimiques des filaments nucléoprotéiques tout en essayant de tracer le paysage énergétique qui régit les transitions de ces systèmes. / Highly conserved throughout the species, homologous recombination is crucial to the survival of any living organism. In humans, the hRad51 protein (human Rad51) plays a key role by self-assembling at the break site on the single stranded extremities of damaged DNA molecules thus forming the nucleoprotein filament. This filament is able by itself to accomplish most of the necessary operations of homologous recombination; it allows the homology search, the pairing of the homologous sequences and the strand exchange.Homologous recombination is a complex process involving many partners. In order to better understand the role of the nucleoprotein filament in this process, we propose to study it in the absence of any partners. We will focus on the study of the mechanical properties of hRad51-dsDNA filaments as a function of chemical conditions. The formation of the nucleoprotein filament modifies the conformation of the DNA molecule on which it assembles, stretching it by 50% and unwinding it by 43% in the case of a double stranded DNA. The magnetic tweezers are a tool allowing the control of the force and torsion applied to a single dsDNA molecule; they are therefore the ideal tool to probe the mechanical properties of nucleoprotein filaments. We modified the magnetic tweezers as to allow the measurement of previously inaccessible mechanical parameters such as the torque applied or felt by the filament. The goal of this thesis has been to study the mechano-chemical properties of nucleoprotein filaments while drawing the energy landscape that governs the various transitions of these systems.
47

Rôle de la protéine TRF2 et de ses partenaires dans la recombinaison des télomères humains / Role of TRF2 and its partners in the homologous recombination of human telomeres

Saint-Léger, Adélaïde 02 December 2011 (has links)
La protéine télomérique TRF2 permet de protéger les télomères notamment en régulant leur taille. Dans des cellules humaines, la surexpression de la protéine mutante TRF2ΔB, dont le domaine basique est absent, induit un raccourcissement soudain des télomères. In vitro, ce domaine basique protège des structures d’ADN particulières, appelées Jonctions de Holliday (JH), de la résolution par des endonucléases. Ces JH peuvent être présentes aux télomères d’une part au niveau de la boucle télomérique, une conformation de l’ADN qui ressemble à une structure intermédiaire de la recombinaison homologue (RH), et d’autre part au niveau des fourches de réplication bloquées, fréquentes aux télomères. Nous pensons que le raccourcissement soudain des télomères implique la résolution de JH au cours d’un événement de recombinaison homologue qui doit être étroitement régulé afin d’éviter qu’il ne se réalise de façon inappropriée. Dans le but de mieux caractériser cet événement, j’ai montré que différentes endonucléases capables de résoudre des JH (GEN1, MUS81, SLX1-SLX4) sont impliquées dans le raccourcissement des télomères induit par la surexpression de la protéine TRF2ΔB. Puis j’ai étudié le rôle de la protéine hRAP1 dans la régulation de ce mécanisme et l’implication des protéines de la RH. L’ensemble des résultats obtenus nous ont permis de proposer un nouveau rôle de la protéine TRF2 dans la régulation des événements de recombinaison homologue au cours de la réplication des télomères. / The stability of mammalian telomeres depends upon TRF2 which prevents inappropriate repair and checkpoint activation. In human cells, overexpressing a TRF2 mutant lacking the N-terminal basic domain, TRF2ΔB, induces sudden telomere shortening. In vitro, the basic domain protects particular DNA structures, called Holliday junctions (HJ), of the resolution by endonucleases. These HJ may be present at telomeres in one hand at the t-loop, a DNA conformation looking like a structural intermediate of homologous recombination (HR), and also at the level of stalled replication forks, frequent at telomeres. We believe that the sudden shortening of telomeres involves the resolution of HJ during a HR event that would be tightly regulated to prevent it occurs inappropriately. In order to better characterize this event, I have shown that different proteins harbouring resolving activities (GEN1, MUS81, SLX1-SLX4) are involved in telomere shortening induced by overexpression of TRF2ΔB. Then, I studied the role of hRAP1 in the regulation of this mechanism and involvement of HR proteins. The overall results allowed us to propose a new role of TRF2 in the regulation of HR events during the replication of telomeres.
48

The MRE11 nuclease promotes homologous recombination not only in DNA double-strand break resection but also in post-resection in human TK6 cells / MRE11ヌクレアーゼは、DNA切断端の削り込み以後の過程にも機能し、相同組換えを促進する

Shimizu, Naoto 23 March 2021 (has links)
付記する学位プログラム名: 充実した健康長寿社会を築く総合医療開発リーダー育成プログラム / 京都大学 / 新制・課程博士 / 博士(医学) / 甲第23091号 / 医博第4718号 / 新制||医||1050(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 篠原 隆司, 教授 増永 慎一郎, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
49

Genetic Evidence for the Involvement of Mismatch Repair Proteins, PMS2 and MLH3, in a Late Step of Homologous Recombination / ミスマッチ修復蛋白質PMS2とMLH3は、相同組換え修復後期過程の組換え中間体DNA構造の解消に機能する

Md, Maminur Rahman 23 March 2021 (has links)
付記する学位プログラム名: 充実した健康長寿社会を築く総合医療開発リーダー育成プログラム / 京都大学 / 新制・課程博士 / 博士(医科学) / 甲第23114号 / 医科博第125号 / 新制||医科||8(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 斎藤 通紀, 教授 篠原 隆司, 教授 滝田 順子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
50

DNA-PK, ATM and ATR Collaboratively Regulate p53-RPA Interaction to Facilitate Homologous Recombination DNA Repair

Serrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, Marina, Cartwright, B., Zou, Y. 09 May 2013 (has links)
Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

Page generated in 0.0952 seconds