• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 13
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 87
  • 49
  • 33
  • 31
  • 30
  • 28
  • 27
  • 24
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Haunting temporalities: Creolisation and black women's subjectivities in the diasporic science fiction of Nalo Hopkinson

Volschenk, Jacolien January 2016 (has links)
Philosophiae Doctor - PhD / This study examines temporal entanglement in three novels by Jamaican-born author Nalo Hopkinson. The novels are: Brown Girl in the Ring (1998), Midnight Robber (2000), and The Salt Roads (2004). The study pays particular attention to Hopkinson's use of narrative temporalities, which are shape by creolisation. I argue that Hopkinson creatively theorises black women's subjectivities in relation to (post) colonial politics of domination. Specifically, creolised temporalities are presented as a response to predatory Western modernity. Her innovative diasporic science fiction displays common preoccupations associated with Caribbean women writers, such as belonging and exile, and the continued violence enacted by the legacy of colonialism and slavery. A central emphasis of the study is an analysis of how Hopkinson not only employs a past gaze, as the majority of both Caribbean and postcolonial writing does to recover the subaltern subject, but also how she uses the future to reclaim and reconstruct a sense of selfhood and agency, specifically with regards to black women. Linked to the future is her engagement with notions of technological and social betterment and progress as exemplified by her emphasis on the use of technology as a tool of empire. By writing science fiction, Hopkinson is able to delve into the nebulous nexus of technology, empire, slavery, capitalism and modernity. And, by employing a temporality shaped by creolisation, she is able to collapse discrete historical time-frames, tracing obscured connections between the nodes of this nexus from its beginnings on the plantation, the birthplace of creolisation and, as some have argued, of modernity itself.
12

Mise au point d'un essai de compaction dynamique. Application au béton

Safa, Kamal 20 October 2008 (has links) (PDF)
No description available.
13

Constitutive Behavior of Aluminum Alloy Sheet At High Strain Rates

Smerd, Rafal January 2005 (has links)
In this work, three aluminum sheet alloys, AA5754, AA5182 and AA6111, which are prime candidates for replacing mild steel in automobile structures, are tested in tension at quasi-static and high strain rates. <br /><br /> In order to characterize the constitutive response of AA5754, AA5182 and AA6111 at high strain rates, tensile experiments were carried out at strain rates between 600 s<sup>-1</sup> and 1500 s<sup>-1</sup>, and at temperatures between ambient and 300°C, using a tensile split Hopkinson bar (TSHB) apparatus. As part of this research, the apparatus was modified in order to provide an improved means of gripping the sheet specimens. Quasi-static experiments also were conducted using an Instron machine. <br /><br /> The experimental data was fit to the Johnson-Cook and Zerilli-Armstrong constitutive models for all three alloys. The resulting fits were evaluated by numerically simulating the tensile experiments conducted using a finite element approach.
14

Hopkinson bar testing of cellular materials

Palamidi, Elisavet January 2010 (has links)
Cellular materials are often used as impact/blast attenuators due to their capacity to absorb kinetic energy when compressed to large strains. For such applications, three key material properties are the crushing stress, plateau stress and densification strain. The difficulties associated with obtaining these mechanical properties from dynamic/impact tests are outlined. The results of an experimental investigation of the quasi-static and dynamic mechanical properties of two types of cellular materials are reported.The dynamic tests were carried out using Hopkinson pressure bars. Experimentally determined propagation coefficients are employed to represent both dispersion and attenuation effects as stress waves travel along the bars. Propagation coefficients were determined for 20 mm and 40 mm diameter viscoelastic PMMA pressure bars and for elastic Magnesium pressure bars. The use of the elementary wave theory is shown to give satisfactory results for frequencies of up to approximately 15 kHz, 8 kHz and 30 kHz for the 20 mm and 40 mm diameter PMMA bars and the 23 mm diameter Magnesium bars respectively. The use of low impedance, viscoelastic pressure bars is shown to be preferable for testing low density, low strength materials.The quasi-static and dynamic compressive properties of balsa wood, Rohacell-51WF and Rohacell-110WF foams are investigated along all three principal directions. The dynamic properties were investigated by performing Split Hopkinson Pressure Bar (SHPB) and Direct Impact (DI) tests. In general, the crushing stress, the plateau stress and the densification strain remain constant with increasing strain rate of the SHPB tests. However, a dynamic enhancement of the crushing stress and plateau stress was revealed for balsa wood and Rohacell-51WF. In contrast, the plateau stresses of the Rohacell-110WF specimens are lower for SHPB than quasi-static tests. From the DI tests, it is shown that compaction waves have negligible effect on the stresses during dynamic compaction of along and across the grain balsa wood at impact speeds between approximately 20-100 m/s. Alternatively, the proximal end stresses of both Rohacell-51WF and 110WF foams increase with increasing impact velocity, following the quadratic trend predicted by 'shock theory'. This indicates that compaction waves are important for the case of Rohacell foam, even at low impact velocities.
15

Design of a Split Hopkinson Bar Apparatus for use with Fiber Reinforced Composite Materials

Lang, Shawn Michael 01 August 2012 (has links)
Tabulated material properties are the starting block for the design of most structures. Mechanical structures undergo a wide range of loading conditions. Structures can be loaded statically or dynamically with a wide range of strain rates. With impact loading or high strain rates the relationships between stress and strain are not the same as in static loading. It has been observed that material properties are dependent upon the rate at which they are tested. Many investigators have studied the effect of high compressive strain rate loading conditions, in metals. The most common method for determining the dynamic response of materials is the Split Hopkinson bar. The main focus of this work was to design a Split Hopkinson Bar apparatus to determine the dynamic compressive behavior of fiber reinforced composite materials. Graphite epoxy laminated composites have compressive failure strengths of 100 MPa. Dynamic compressive testing shows that the failure stress has increased to 260 MPa, an increase of approximately 230%. This testing shows that material properties are a function of the rate at which they are loaded.
16

A Study of the Dynamic Behavior of a Solid Grade SW Brick using the Split Hopkinson Pressure Bar

Williams, Erin Marie 01 May 2010 (has links)
The purpose of this investigation was to provide quality dynamic strength properties for a solid grade severe-weather (SW) brick material and to illustrate the need for careful evaluation of the strain-rate effects on geomaterials. A split Hopkinson pressure bar (SHPB) was used to perform a series of tests on specimens from a solid grade SW brick to determine the mechanical response of this material at high strain-rates. Both classical and modified SHPB tests were performed. The results from the classical SHPB tests provided evidence that modifications to the SHPB are necessary when testing geomaterials such as brick. To modify the SHPB, a small copper disk was placed at the impact end of the SHPB incident bar to increase the rise time of the initial pulse. The material response from the modified SHPB tests provided an average compressive strength of 104 MPa, which resulted in a dynamic increase factor of 1.42.
17

Hydrodynamic Modeling Of Impact Craters In Ice

Sherburn, Jesse Andrew 15 December 2007 (has links)
In this study, impact craters in water ice are modeled using the hydrodynamic code CTH. In order to capture impact craters in ice an equation of state and a material model are created and validated. The validation of the material model required simulating the Split Pressure Hopkinson Bar (SPHB) experimental apparatus. The SPHB simulation was first compared to experiments completed on Al 6061-T6, then the ice material model was validated. After validation, the cratering simulations modeled known experiments found in the literature. The cratering simulations captured the bulk physical aspects of the experimental craters, and the differences are described. Analysis of the crater simulations showed the damaged volume produced by the projectile was proportional to the projectile’s momentum. Also, the identification of four different stages in the crater development of ice (contact and compression, initial damage progression, crater shaping, and ejected damaged material) are described.
18

Effect of pressure on viscoplasticity and its usefulness in designing impact devices

Jarachi, Marouane 10 May 2024 (has links) (PDF)
This work investigates the interactions between impact devices and material response in the realm of solid mechanics, utilizing explicit finite element analysis and experimental methods based on the split-hopkinson pressure bar. It focuses on understanding how tools like jackhammers use hammer strikes to generate pressure waves, then the wave is transferred through a chisel to materials such as rocks to cause fracture. The interaction between the wave and the rock is complex. Under dynamic loading the mechanical response of materials changes and significant losses occur due to reflections and inefficient pressure states. This research explores how chisel geometry can be optimized to control critical parameters influencing rock fracture, including stress state, pulse length, and peak pressure. The use of notches to influence the stress state, periodic boundaries to influence the pulse length and pressure amplification in tapers the increase the pressure showed an improvement in efficiency in jackhammers. Additionally, this work extends insights of the concept of pressure amplification in solids, to liquids inside tapered pipes, enhancing the understanding of phenomena like pulse pressure amplification in arteries and water hammer effects in piping systems. Two innovative contributions emerge from this work: a novel amplifier design for water cannons, improving these machines efficiency and showing promise for applications in water jet cutting and drilling, and a novel process for extruding nanocrystalline magnesium. This process leverages pressure amplification and impact-induced plastic shear deformations to refine crystal size, offering a new avenue for producing various nanocrystalline materials.
19

Dynamic Deformation and Shear Localization in Friction-Stir Processed Al0.3CoCrFeNi and Fe50Mn30Co10Cr10 High-Entropy Alloys

Macdonald, Neil 08 1900 (has links)
High entropy alloys (HEAs) are a relatively new class of solid solution alloys that contain multiple principal elements to take advantage of their high configurational entropy, sluggish diffusion, lattice distortion, and the cocktail effect. In recent development, work hardening mechanisms known as twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) have been found active in Al0.3CoCrFeNi (molar fraction) and Fe50Mn30Co10Cr10 (at %) HEA compositions. Friction-stir processing was done to increase the mechanical properties and improve the microstructure of the alloys for the purpose of high strain rate performance. Quasi-static tensile tests as well as top-hat geometry Split-Hopkinson pressure bar tests were conducted to view the mechanical properties as well as view the microstructural evolution at dynamic strain rates. Overall, the Al0.3CoCrFeNi condition after friction-stir processing and heat treatment has proved to have the best mechanical properties, and selecting from the conditions in this study, Al0.3CoCrFeNi has better shear localization resistance.
20

Dynamic enhancement and multi-axial behavior of honeycombs under combined shear-compression / Comportement multiaxial des nids d'abeilles sous sollicitations dynamiques

Hou, Bing 26 March 2011 (has links)
Cette thèse est composée de deux parties. La première partie est liée à l’augmentation sous impact des résistances des nids d'abeilles en compression uniaxiale. D’abord, nous avons étudié ce phénomène particulier numériquement à l’aide des modèles éléments finis et cela nous a permis de démontrer le rôle de l’inertie latéral dans cette augmentation. Ensuite, le comportement dynamique d'une série de nids d'abeilles (tailles de cellule et épaisseurs des parois et matériau de base différents) a été étudiée expérimentalement pour confirmer les résultats de la simulation. La deuxième partie concerne le comportement biaxial de nids d'abeilles sous cisaillement-compression combinés. Nous y présenterons d'abord un dispositif pour appliquer le cisaillement-compression combiné, en utilisant un système des barres de Hopkinson viscoélastiques de grand diamètre. Une série d'essais sur des nids d'abeille en aluminium sont réalisées en statique et en dynamique, avec les angles de chargement allant de 0° à 60o (part de cisaillement de plus en plus important). Ces essais montrent un important effet du cisaillement supplémentaire sur la résistance globale du nid d'abeille. Une augmentation de la résistance sous chargement d'impact est observée pour tous les angles. Les images capturées lors des essais permettent de la détermination des deux modes de déformations coexistant sous cisaillement-compression combiné. Enfin, les essais de cisaillement-compression sur des nids d'abeilles sont reproduites numériquement afin de séparer le comportement normale et celui du cisaillement. La courbe limite dans le plan de la contrainte normale vs la contrainte du cisaillement a été obtenue, qui montre une augmentation homogène (isotropie) sous chargement dynamique. / The study consists mainly of two parts. The first part is related to the dynamic strength enhancement of honeycombs under uniaxial compression. We firstly study numerically this particular phenomenon of thin-walled structure by using three micro-size FE models and this allows us to reveal the role played by lateral inertia in the dynamic enhancement. Further more, the dynamic enhancement of a series of honeycombs with different cell-size, cell-wall thickness and base material is studied experimentally and the influence of these geometric parameters and the base material on honeycomb strength as well as the dynamic enhancement rate is investigated. The second part of this study concerns the biaxial behavior of honeycombs under combined shear-compression. We firstly present a combined dynamic shear-compression loading device basing on a large-diameter Nylon Split Hopkinson Pressure Bar system. Then, a series of quasi-static and dynamic experiments on an aluminium honeycomb is performed with loading angles ranging from 0o to 60o (part of shear more and more important). It shows a strong effect of the additional shear loading to honeycomb overall strength. A notable strength enhancement under impact loading is observed for all the honeycomby b specimens. Images captured during tests permit for the determination of the two co-existing deforming patterns under combined shear-compression. Finally, the combined shear-compression tests on honeycombs are reproduced by a numerical virtual model and the separated normal and shear behaviors of honeycombs under combined shear-compression are obtained. A crushing envelope in normal strength vs. shear strength plane was obtained on the basis of these simulations, which shows an isotropic expansion behavior from the quasi-static loading to the dynamic loading.

Page generated in 0.052 seconds