Spelling suggestions: "subject:"horizontal axis wind turbines"" "subject:"orizontal axis wind turbines""
1 |
Reliability analysis and condition monitoring or a horizontal axis wind turbine /Khan, Muhammad Mohsin K. January 2005 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2005. / Bibliography: leaves 112-116.
|
2 |
Aerodynamic Design And Optimization Of Horizontal Axis Wind Turbines By Using Bem Theory And Genetic AlgorithmCeyhan, Ozlem 01 September 2008 (has links) (PDF)
An aerodynamic design and optimization tool for wind turbines is developed by using both Blade Element Momentum (BEM) Theory and Genetic Algorithm. Turbine blades are optimized for the maximum power production for a given wind speed, a rotational speed, a number of blades and a blade radius. The optimization variables are taken as a fixed number of sectional airfoil profiles, chord lengths, and twist angles along the blade span. The airfoil profiles and their aerodynamic data are taken from an airfoil database for which experimental lift and drag coefficient data are available. The BEM analysis tool developed is first validated with the experimental data for low wind speeds. A 100 kW wind turbine, which is used in the validation, is then optimized. As a result of the optimization, the power production is improved by 40 to 80 percent. The optimization methodology is then employed to design a 1MW wind turbine with a 25m radius.
|
3 |
The development of a segmented variable pitch small horizontal axis wind turbine with active pitch controlPoole, Sean January 2013 (has links)
Small scale wind turbines operating in an urban environment produce dismal amounts of power when compared to their expected output [1-4]. This is largely due to the gusty wind conditions found in an urban environment, coupled with the fact that the wind turbines are not designed for these conditions. A new concept of a Segmented Variable Pitch (SVP) wind turbine has been proposed, which has a strong possibility to perform well in gusty and variable wind conditions. This dissertation explains the concept of a SVP wind turbine in more detail and shows analytical and experimental results relating to this concept. Also, the potential benefits of the proposed concept are mentioned. The results from this dissertation show that this concept has potential with promising results on possible turbine blade aerofoil configurations. Scaled model tests were completed and although further design optimisation is required, the tests showed good potential for the SVP concept. Lastly a proof-of-concept full scale model was manufactured and tested to prove scalability to full size from concept models. Along with the proof-of-concept full scale model, a wireless control system (to control the blade segments) was developed and tested.
|
4 |
Optimisation of a mini horizontal axis wind turbine to increase energy yield during short duration wind variationsPoole, Sean Nichola January 2017 (has links)
The typical methodology for analytically designing a wind turbine blade is by means of blade element momentum (BEM) theory, whereby the aerofoil angle of attack is optimized to achieve a maximum lift-to-drag ratio. This research aims to show that an alternative optimisation methodology could yield better results, especially in gusty and turbulent wind conditions. This alternative method looks at increasing the aerofoil Reynolds number by increasing the aerofoil chord length. The increased Reynolds number generally increases the e_ectiveness of the aerofoil which would result in a higher or similar lift-to-drag ratio (even at the decreased angle of attacked require to maintain the turbine thrust coe_cient). The bene_t of this design is a atter power curve which causes the turbine to be less sensitive to uctuating winds. Also, the turbine has more torque at startup, allowing for operatation in lower wind speeds. This research is assumed to only be applicable to small wind turbines which operated in a low Reynolds number regime (<500 000), where Reynolds number manipulation is most advantageous.
|
5 |
Computational Studies of the Effects of Active and Passive Circulation Enhancement Concepts on Wind Turbine PerformanceTongchitpakdee, Chanin 14 June 2007 (has links)
With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation.
In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved.
Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
|
Page generated in 0.076 seconds