• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nature Inspired Interior Design Principles in the Hot Arid Climate of Saudi Arabia

January 2016 (has links)
abstract: Biomimicry is an approach that entails understanding the natural system and designs and mimicking them to create new non-biological systems that can solve human problems. From bio-based material development to biologically inspired designs, architects and designers excelled in highlighting the fascination of integrating the biomimetic thinking process into the modern design that provides more comfortable space in which to live. This thesis explores how historical sustainable strategies from Islamic traditional architecture incorporated natural design system that could now be appropriately applied to interior architecture. In addition, it explores the current existing problems in this field and the possibilities of biomimetic sustainable solutions for existing buildings in the hot dry climate regions of Saudi Arabia. The author concentrates on examining Islamic traditional architecture where the past architects incorporated certain aspects of nature in their construction and through using local resources, built buildings that mitigated heat and provided protection from cold. As a result of completing this research, it was found that there are common characteristics between the traditional Islamic architecture elements and system solutions found in some natural organisms. Characteristics included, for example, evaporative cooling, stuck effect, and avoiding heat gain. However, in the natural world, there is always opportunities to further explore more about the impacts of biomimicry and natural strategies applicable to enhance interior environments of buildings. / Dissertation/Thesis / Masters Thesis Design 2016
2

Impact of Carbon Sinks on Urban Heat Island Effects : Assessment Using Satellite Data in Water Scarce Region of the Thesis

Macauley, Nadine January 2020 (has links)
Urbanization modifies the thermal characteristics of the land and makes way for a succession of transformations in the urban environmental system. This phenomenon, known as Urban Heat Island (UHI), is characterized by elevated temperatures in urban areas that negatively impact on the quality of life and environment in urban areas including, increased emissions of Green House Gases (GHGs) and rising energy consumption. These impacts add to global climate change and thus, mitigating UHI is essential to mitigating global climate change. One GHG, Carbon Dioxide (CO2), accounts for about half of the Earth’s anthropogenic GHG emissions. Terrestrial ecosystems can act as Carbon sinks (C sinks), i.e. natural vegetation reservoirs that absorb more C than they release. Thus, C sinks play an essential and critical function in lowering CO2. Furthermore, providing appropriate C sinks at both the building and urban scales can decrease UHI and contribute to reduction in energy consumption. This study used Landsat 8 imagery of the site, Al Bayt Stadium in Qatar, to investigate the effects of surface UHI by computing the Land Surface Temperature (LST) difference of the site---pre- and post-construction, as well as examine the correlation between natural vegetation abundance and temperature in ten locations within the site’s vicinity. Results show that minimum, maximum and mean LST of the case study area (2014 vs. 2020) decreased 2.80 oC, 5.5 oC and 2.3 oC, respectively, as well as a decreasing trend in the LST as a function of increasing C Sinks. These results demonstrate the importance of introducing C sinks to lower LST and mitigate UHI. Mitigating UHI also has a direct effect on Energy Consumption Balance (ECB). This equilibrium is achieved not only through the introduction of C sinks, but balancing C sinks with high albedo materials and natural ventilation.  Thus, this study also investigated the site’s various design aspects (e.g. cooling technology, structure and surface albedo materials, landscaping) and found that Al Bayt Stadium’s design successfully incorporates strategies to reduce energy consumption at both the urban (macro) and building (micro) scales.

Page generated in 0.0564 seconds