• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 13
  • 4
  • 3
  • 1
  • Tagged with
  • 64
  • 64
  • 37
  • 28
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine

Mahmah, O., Tabbakh, R., Kelly, Adrian L., Paradkar, Anant R January 2014 (has links)
No / OBJECTIVES: To compare the properties of solid dispersions of felodipine for oral bioavailability enhancement using two different polymers, polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), by hot-melt extrusion (HME) and spray drying. METHODS: Felodipine solid dispersions were prepared by HME and spray drying techniques. PVP and HPMCAS were used as polymer matrices at different drug : polymer ratios (1 : 1, 1 : 2 and 1 : 3). Detailed characterization was performed using differential scanning calorimetry, powder X-ray diffractometry, scanning electron microscopy and in-vitro dissolution testing. Dissolution profiles were evaluated in the presence of sodium dodecyl sulphate. Stability of different solid dispersions was studied under accelerated conditions (40 degrees C/75% RH) over 8 weeks. KEY FINDINGS: Spray-dried formulations were found to release felodipine faster than melt extruded formulations for both polymer matrices. Solid dispersions containing HMPCAS exhibited higher drug release rates and better wettability than those produced with a PVP matrix. No significant differences in stability were observed except with HPMCAS at a 1 : 1 ratio, where crystallization was detected in spray-dried formulations. CONCLUSIONS: Solid dispersions of felodipine produced by spray drying exhibited more rapid drug release than corresponding melt extruded formulations, although in some cases improved stability was observed for melt extruded formulations.
62

Cocrystalization and simultaneous agglomeration using hot melt extrusion

Dhumal, Ravindra S., Kelly, Adrian L., York, Peter, Coates, Philip D., Paradkar, Anant R January 2010 (has links)
No / PURPOSE: To explore hot melt extrusion (HME) as a scalable, solvent-free, continuous technology to design cocrystals in agglomerated form. METHODS: Cocrystal agglomerates of ibuprofen and nicotinamide in 1:1 ratio were produced using HME at different barrel temperature profiles, screw speeds, and screw configurations. Product was characterized for crystallinity by XRPD and DSC, while the morphology was determined by SEM. Dissolution rate and tabletting properties were compared with ibuprofen. RESULTS: Process parameters significantly affected the extent of cocrystallization which improved with temperature, applied shear and residence time. Processing above eutectic point was required for cocrystallization to occur, and it improved with mixing intensity by changing screw configuration. Product was in the form of spherical agglomerates, which showed directly compressible nature with enhanced dissolution rate compared to ibuprofen. This marks an important advantage over the conventional techniques, as it negates the need for further size modification steps. CONCLUSIONS: A single-step, scalable, solvent-free, continuous cocrystallization and agglomeration technology was developed using HME, offering flexibility for tailoring the cocrystal purity. HME being an established technology readily addresses the regulatory demand of quality by design (QbD) and process analytical technology (PAT), offering high potential for pharmaceuticals.
63

Suitability of cellulose ester derivatives in hot melt extrusion.Thermal, rheological and thermodynamic approaches used in the characterization of cellulose ester derivatives for their suitability in pharmaceutical hot melt extrusion

Karandikar, Hrushikesh M. January 2015 (has links)
Applications of Hot Melt Extrusion (HME) in pharmaceuticals have become increasingly popular over the years but nonetheless a few obstacles still remain before wide scale implementation. In many instances these improvements are related to both processing and product performance. It is observed that HME process optimisation is majorly focused on the active pharmaceutical ingredient's (API) properties. Characterising polymeric properties for their suitability in HME should be equally studied since the impact of excipients on both product and process performance is just as vital. In this work, two well-established cellulose ester derivatives: Hydroxy Propyl Methyl Cellulose Acetate Succinate (HPMCAS) and Hydroxy Propyl Methyl Cellulose Phthalate (HPMCP) are studied for their HME suitability. Their thermal, thermodynamic, rheological, thermo-chemical and degradation kinetic properties were evaluated with model plasticisers and APIs. It was found the thermal properties of HPMCP are severely compromised whereas HPMCAS is more stable in the processing zone of 150 to 200 °C. Thermodynamic properties revealed that both polymers share an important solubility parameter range (20-30 MPa P1/2P) where the majority of plasticisers and BCS class II APIs lie. Thus, greater miscibility/solubility can be expected. Further, the processability of these two polymers investigated by rheometric measurements showed HPMCAS possesses better flow properties than HPMCP because HPMCP forms a weak network of chain interactions at a molecular level. However, adding plasticisers such as PEG and TEC the flow properties of HPMCP can be tailored. The study also showed that plasticisers have a major influence on thermo-chemical and kinetic properties of polymers. For instance, PEG reduced polymer degradation with reversal in kinetic parameters whereas blends of CA produced detrimental effects and increased polymer degradation with reduction in onset degradation temperatures. Further, both polymers are observed to be chemically reactive with the APIs containing free -OH, -SOR2RN- and -NH2 groups. Finally, these properties prove that suitability of HPMCP is highly debated for HME and demands great care in use while that of HPMCAS is relatively better than HPMCP in many instances.
64

Adhesion problematics and curing kinetics in a thermosetting matrix for stitch-free non-crimp fabric

Kruppke, Iris, Hund, Rolf-Dieter, Cherif, Chokri 18 September 2019 (has links)
Non-crimp fabrics (NCF) have become established in the fields of the automotive, aircraft, and wind power industries, which has led to an increasing demand of fiber plastic composites. In order to utilize the known excellent load-bearing properties of NCF and also to reduce the related disadvantages such as fiber undulation caused by stitching yarn, inclusions of resin and filament breakage by the stitch-bonding process have to be addressed. Hence, an alternative manufacturing technology is presented. This technology is defined by the punctiform application of a polyester hot melt adhesive to enable different geometries of NCF and ensure the position of the high-performance fiber in the load direction. The new manufacturing process, on the one hand, demands new testing methods to investigate the adhesion between the used adhesive and highperformance fibers, while, on the other, the surface of the adherend (carbon fiber) needs to be improved. Oxyfluorination is used here for the surface modification. Different tests such as peel test, shear test and transverse tensile test were developed and evaluated with different adhesives and high-performance yarns based on glass and carbon. The influence of the used copolyester hot melt on the curing kinetics of an epoxy matrix was investigated by differential scanning calorimetry using quasi-isothermal and non-isothermal measurements. In addition, the interface between the thermoplastic epoxy resin and the copolyester hot melt was analyzed by scanning electron microscopy.

Page generated in 0.0441 seconds