• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Hot Tearing in Cast and Wrought Aluminum Alloys

Wu, Qinxin 20 August 2012 (has links)
"During the solidification process in casting, hot tearing may occur. It is a severe defect that normally involves the formation of a macroscopic tear, which generates cracks either on the surface or inside the casting. Over the past decades, many strategies have been developed to evaluate the hot tearing tendency. Unfortunately, most of the tests can only provide qualitative information. Therefore, a reliable and quantitative test to evaluate hot tearing in aluminum alloys is highly desirable. To address this issue, WPI and CANMET MTL (both members of the Light Metal Alliance) jointly developed a quantitative hot tearing test and established a specific methodology. Using a constrained rod mold, the hot tearing formation can be quantitatively studied by measuring the contraction force, time and temperature during solidification for a restrained casting or linear contraction, time and temperature for a relaxed casting. This study investigated cast aluminum alloys A380.1 and A390 and wrought aluminum alloys 6061 and 7075. The results show that wrought aluminum alloys have a much stronger hot tearing tendency than cast aluminum alloys based on a quantitative analysis. Also, the study involves the effects of adding strontium and oxides respectively into the cast aluminum alloy A380.1. Compared with the pure A380.1 alloy, the introduction of strontium decreases the hot tearing tendency, while the inclusion of oxide greatly increases the hot tearing. The information obtained through these tests provides a database of hot tearing phenomenon and establishes a new hot tearing index."
2

Hot Tearing in Cast Aluminum Alloys: Measures and Effects of Process Variables

Li, Shimin 28 April 2010 (has links)
Hot tearing is a common and severe defect encountered in alloy castings and perhaps the pivotal issue defining an alloy's castability. Once it occurs, the casting has to be repaired or scraped, resulting in significant loss. Over the years many theories and models have been proposed and accordingly many tests have been developed. Unfortunately many of the tests that have been proposed are qualitative in nature; meanwhile, many of the prediction models are not satisfactory as they lack quantitative information, data and knowledge base. The need exists for a reliable and robust quantitative test to evaluate/characterize hot tearing in cast alloys. This work focused on developing an advanced test method and using it to study hot tearing in cast aluminum alloys. The objectives were to: 1) develop a reliable experimental methodology/setup to quantitatively measure and characterize hot tearing; and 2) quantify the mechanistic contributions of the process variables and investigate their effects on hot tearing tendency. The team at MPI in USA and CANMET-MTL in Canada has collaborated and developed such a testing setup. It consists mainly of a constrained rod mold and the load/displacement and temperature measuring system, which gives quantitative, simultaneous measurements of the real-time contraction force/displacement and temperature during solidification of casting. The data provide information about hot tearing formation and solidification characteristics, from which their quantitative relations are derived. Quantitative information such as tensile coherency, incipient crack refilling, crack initiation and propagation can be obtained. The method proves to be repeatable and reliable and has been used for studying the effects of various parameters (mold temperature, pouring temperature and grain refinement) on hot tearing of different cast aluminum alloys. In scientific sense this method can be used to study and reveal the nature of the hot tearing, for industry practice it provides a tool for production control. Moreover, the quantitative data and fundamental knowledge gained in this thesis can be used for validating and improving the existing hot tearing models.
3

The Effect of Mechanical Mold Vibration On the Characteristics of Aluminum Alloys

Deshpande, Jayesh U 21 September 2006 (has links)
"Aluminum-Silicon and Aluminum-Copper alloys are important non-ferrous casting alloys. Different methods have been applied to improve their casting characteristics, their microstructure and consequently, their mechanical properties. Application of mechanical vibrations to the mold during solidification of the alloy is one of these methods. In this study, the effect of controlled mechanical vibrations on the dendrite coherency point, the hot tearing tendency, and the microstructure of B206, B390, and binary Al-7%Si alloys was evaluated. The dendrite coherency point was determined using the two-thermocouple method. The hot tearing tendency was evaluated using the crack susceptibility criterion (CSCb) and by means of measurements using a specially designed ring mold. Microstructure characterization was performed using optical and scanning electron microscopy coupled with image analysis. It was found that mechanical vibrations refine the microstructure of the alloys; and, in the case of B390 alloy, it resulted in significant improvement in the distribution of the primary silicon particles. In the case of B206 and Al-7%Si alloys, where aluminum is the primary phase, mechanical vibrations caused the dendrite coherency point to shift towards lower temperature, i.e., towards higher fraction solid. This shift, together with the refinement of the grain structure, manifested itself in significant reduction in the incidence of hot tearing in B206 castings. "
4

Hot tearing and constitutive behaviour of semi-solid aluminum alloys

Phillion, Andre 05 1900 (has links)
The occurrence of hot tearing during solidification is one of the major factors influencing both the quality and productivity of aluminum castings. In order to reduce the formation of hot tears, quantitative information regarding both hot tearing formation and semi-solid deformation is essential. In this study, the mechanisms of hot tearing and semi-solid deformation have been investigated via two novel techniques: x-ray micro-tomography on material deformed in the semi-solid region, and development of a three phase microstructural model based on a geometry derived from a Voronoi diagram with rounded corners and porosity. Numerical techniques were utilized to quantify both the size evolution and orientation of internal damage relative to void growth. In order to conduct the above research, a new semi-solid tensile deformation methodology was devised which uses a two thermocouple control technique to enable accurate measurement of semi-solid tensile strength and ductility. The experimental work was conducted on the aluminum – magnesium alloy AA5182 in the as-cast and hot isostatic pressing (HIP) states. The x-ray micro-tomography technique was used to observe that semi-solid deformation is accommodated by internal damage via growth of as-cast porosity and the nucleation of new damage-based voids. As the volume fraction of damage increases, the growth of voids occurs in an orientation perpendicular to the loading direction, both through expansion within the grain boundary liquid and via coalescence between voids. The damage then localizes, causing failure. The finite element semi-solid microstructural model was used to explore the effects of fraction solid, fraction porosity, and grain size on semi-solid constitutive behaviour. The simulations revealed that increased grain size and fraction porosity lead to a reduction in flow stress for a given fraction solid. Furthermore, local strain accumulation was linked to hot tearing, since strain localizes in the liquid very early in the deformation process. Based on the model predictions, a new constitutive relationship was developed over the range 0.75 < fs < 0.95. Together, these two techniques have provided powerful new insight, such as the critical role played by as-cast porosity, on the phenomena of hot tearing and semi-solid deformation in aluminum alloys.
5

Hot tearing and constitutive behaviour of semi-solid aluminum alloys

Phillion, Andre 05 1900 (has links)
The occurrence of hot tearing during solidification is one of the major factors influencing both the quality and productivity of aluminum castings. In order to reduce the formation of hot tears, quantitative information regarding both hot tearing formation and semi-solid deformation is essential. In this study, the mechanisms of hot tearing and semi-solid deformation have been investigated via two novel techniques: x-ray micro-tomography on material deformed in the semi-solid region, and development of a three phase microstructural model based on a geometry derived from a Voronoi diagram with rounded corners and porosity. Numerical techniques were utilized to quantify both the size evolution and orientation of internal damage relative to void growth. In order to conduct the above research, a new semi-solid tensile deformation methodology was devised which uses a two thermocouple control technique to enable accurate measurement of semi-solid tensile strength and ductility. The experimental work was conducted on the aluminum – magnesium alloy AA5182 in the as-cast and hot isostatic pressing (HIP) states. The x-ray micro-tomography technique was used to observe that semi-solid deformation is accommodated by internal damage via growth of as-cast porosity and the nucleation of new damage-based voids. As the volume fraction of damage increases, the growth of voids occurs in an orientation perpendicular to the loading direction, both through expansion within the grain boundary liquid and via coalescence between voids. The damage then localizes, causing failure. The finite element semi-solid microstructural model was used to explore the effects of fraction solid, fraction porosity, and grain size on semi-solid constitutive behaviour. The simulations revealed that increased grain size and fraction porosity lead to a reduction in flow stress for a given fraction solid. Furthermore, local strain accumulation was linked to hot tearing, since strain localizes in the liquid very early in the deformation process. Based on the model predictions, a new constitutive relationship was developed over the range 0.75 < fs < 0.95. Together, these two techniques have provided powerful new insight, such as the critical role played by as-cast porosity, on the phenomena of hot tearing and semi-solid deformation in aluminum alloys.
6

Microtomographie in situ appliquée à la déformation et la solidification d'alliages d'aluminium / in situ Microtomography applied to deformation and solidification of aluminium alloys

Mireux, Bastien 13 November 2012 (has links)
La fissuration à chaud est un défaut majeur intervenant en fin de solidification d'alliages métalliques, lorsque le matériau est encore à l'état semi solide. L'objectif de cette thèse est d'apporter une contribution à la prévision de ce phénomène. Pour cela il est nécessaire de caractériser la déformabilité de la phase solide d'un matériau à l'état semi solide et d'apporter des informations au niveau local sur la microstructure lors de sa déformation (fractions de liquide et de pores, épaisseur de films de liquide, vitesses d'écoulement du liquide, indice de coalescence des pores...). Le comportement macroscopique de la phase solide sur la ligne de solidus a été déterminé et validé par des essais de compression à chaud. Cette loi de comportement a également été comparée avec plusieurs modèles analytiques. La différence de comportement mécanique entre une microstructure de composition homogène et une microstructure à gradient de composition a été mise en évidence. Des informations microscopiques en temps réel sur des échantillons à l'état semi solide soumis à un effort de traction ont été obtenues par microtomographie in situ standard en conditions isothermes et en solidification. Un modèle analytique prédictif de la fissuration à chaud a été modifié pour mieux rendre compte des valeurs expérimentales. Pour gagner en résolutions temporelle et spatiale, un dispositif de traction destiné à l'utilisation de la microtomographie in situ rapide ou ultra rapide a été conçu et réalisé. Les essais en conditions isothermes et en solidification sont désormais reproductibles sur une microstructure obtenue par refusion. Des phénomènes rapides au sein d'une microstructure très fine sont maintenant observables. / Hot tearing is a defect which forms at high solid fraction in solidifying alloys, when the material is still semi solid. This work aims at bringing a contribution to the prevision of this phenomenon. To be able to do that, it is necessary to characterize deformability of the semi-solid alloy solid phase, and also bring local information on microstructure during its straining (liquid and pore fractions, liquid films thickness, liquid flow velocity…). Solid phase macroscopic behaviour on solidus line has been determined and validated by hot compression tests. The calculated behaviour law has also been compared with several analytical models. Mechanical behaviour differences between homogeneous and composition gradient microstructure has been put in evidence. Real time microscopic information on tensile tested semi solid samples have been obtained by in situ standard microtomography, in isothermal and solidification conditions. An analytic hot tearing predictive model has been modified to better fit the experimental data. An experimental device has been developed and realized to be able to carry out high and ultra high speed microtomography. These two methods bring better both time and space resolution. High velocity phenomenons in very fine microstructures can thus be visible. Isothermal and solidification conditions tests and now reproducible on remelted samples.
7

Hot tearing and constitutive behaviour of semi-solid aluminum alloys

Phillion, André 05 1900 (has links)
The occurrence of hot tearing during solidification is one of the major factors influencing both the quality and productivity of aluminum castings. In order to reduce the formation of hot tears, quantitative information regarding both hot tearing formation and semi-solid deformation is essential. In this study, the mechanisms of hot tearing and semi-solid deformation have been investigated via two novel techniques: x-ray micro-tomography on material deformed in the semi-solid region, and development of a three phase microstructural model based on a geometry derived from a Voronoi diagram with rounded corners and porosity. Numerical techniques were utilized to quantify both the size evolution and orientation of internal damage relative to void growth. In order to conduct the above research, a new semi-solid tensile deformation methodology was devised which uses a two thermocouple control technique to enable accurate measurement of semi-solid tensile strength and ductility. The experimental work was conducted on the aluminum – magnesium alloy AA5182 in the as-cast and hot isostatic pressing (HIP) states. The x-ray micro-tomography technique was used to observe that semi-solid deformation is accommodated by internal damage via growth of as-cast porosity and the nucleation of new damage-based voids. As the volume fraction of damage increases, the growth of voids occurs in an orientation perpendicular to the loading direction, both through expansion within the grain boundary liquid and via coalescence between voids. The damage then localizes, causing failure. The finite element semi-solid microstructural model was used to explore the effects of fraction solid, fraction porosity, and grain size on semi-solid constitutive behaviour. The simulations revealed that increased grain size and fraction porosity lead to a reduction in flow stress for a given fraction solid. Furthermore, local strain accumulation was linked to hot tearing, since strain localizes in the liquid very early in the deformation process. Based on the model predictions, a new constitutive relationship was developed over the range 0.75 < fs < 0.95. Together, these two techniques have provided powerful new insight, such as the critical role played by as-cast porosity, on the phenomena of hot tearing and semi-solid deformation in aluminum alloys. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
8

Hot Tearing Susceptibility of Single-Phase Al-3.8 wt%Zn-1 wt%Mg Alloy Using the Constrained Rod Solidification Experiment: Influence of 1.2 wt%Fe Addition and Grain Refinement

Maia Aguiar, Amanda January 2020 (has links)
The increasing global demand for a substantial lightweighting of automobiles to enable a reduction in the greenhouse gas (GHG) emissions and fuel consumption has led to the adaptation of the high strength Al wrought alloys such as the 2xxx and 7xxx series in near net-shaped manufacturing using the high pressure die casting (HPDC) process. However, the obstacle for this adaptation is the high susceptibility to hot tearing during the solidification of these alloys. A new structural Al alloy for high pressure die casting application was developed from the single-phase Al-Zn-Mg family; a high strength and ductile alloy that could be adapted to manufacturing automotive structural components using HPDC and help with a significant reduction in the overall curb-weight of an automobile and thereby increasing the vehicle fuel efficiency. The objective of this study was to enable a better understanding of the hot tearing phenomenon during solidification of the Al-3.8 wt%Zn-1 wt%Mg alloy, the effect of adding 1.2 wt% Fe to the alloy to improve the castability in HPDC process and the effect of adding Ti as a grain refiner of the primary Al phase during solidification of the alloy using Al-5 wt%Ti-1 wt%B master alloy. The constrained rod solidification (CRS) experiments were carried out to measure transient stress, transient strain, and transient temperature during solidification of the alloy. Improvements to the CRS experiments were also developed to obtain a repeatability of the acquired data. The computerized Tomography (CT) imaging was used to visually characterize the hot tearing. Hypothesis on the factors promoting the hot tearing tendencies in single-phase alloys solidified using net-shaped casting processes has been presented with evidence-based on transient stress-strain and thermal data curves obtained during the solidification experiments. / Thesis / Master of Applied Science (MASc)
9

SHAPE CASTING HIGH STRENGTH Al-Zn-Mg-Cu ALLOYS: INTRODUCING COMPOSITION-BEHAVIOR RELATIONSHIPS

Mazahery, Ali January 2016 (has links)
This project was funded by Automotive Partnership Canada (APC), an initiative created by the Government of Canada in an attempt to support significant, collaborative R&D activities in order to benefit the entire Canadian automotive industry. / High strength Al-Zn-Mg-Cu alloys have been increasingly employed in the transportation industry due to the increased demands for light structural components. However, their applications have been limited to relatively expensive wrought products. Application of the shape cast Al-Zn-Mg-Cu parts has never been the focus of attention due to their poor castability and mechanical properties. Improving the casting quality is expected to increase their utilization within the automotive industry. The poor castability and mechanical properties of some alloys in this family may be effectively improved through optimized chemistry control and melt treatment including grain refinement. The primary objective of this project is to optimize the chemistry and heat treatment of the Al-Zn-Mg-Cu alloy family that results in improved strength with acceptable level of ductility and casting quality relative to other shape cast Al alloys. The Taguchi experimental design method was used to narrow down the number of required casting experiments required to meet the research objective. Three levels across four elements yielded a total of 9 Al-Zn-Mg-Cu alloys, which were cast using a tilt pour permanent mold process. The effect of each major alloying element on the microstructure, and mechanical properties was investigated. Tensile measurements were made on the 9 alloys subjected to two steps solution treatments. Mechanical properties such as yield strength (YS), ultimate tensile strength (UTS), and elongation at fracture (El.%) were experimentally measured and statistically analyzed. An ANOVA analysis was employed to quantify the percentage contribution of the alloying elements on the material properties. Grain refinement was found to play a significant role in improving the hot tearing resistance and, thereby ameliorating quality. The alloying element that affected the YS and UTS to the greatest extent was Cu, followed by Zn. In contrast, the effect of Mg and Ti on YS and UTS was insignificant. Moreover, a decrease in Mg content had the greatest effect in enhancing the El.%. A regression analysis was used to obtain statistical relationships (models) correlating the material properties with the variations in the content of the major alloying elements. The R-square values of YS, UTS, and El.% were 99.7 %, 98 %, and 90 %, respectively, showing that the models replicated the experimental results. Verification measurements made on shape cast Al-6Zn-2Mg-2Cu alloy revealed that the material property model predictions were in agreement with the experimentally measured values. The results show that secondary and over ageing treatments of the shape cast Al-Zn-Mg-Cu alloys lead to superior combination of YS and El.%. The ongoing advances in shape casting of Al-Zn-Mg-Cu alloys with high will make them suitable choices for commercial load-bearing automotive components, when it comes to the selection of a material meeting the minimum requirements for strength, damage tolerance, cost and weight. / Thesis / Master of Applied Science (MASc)
10

Deformation of steel ingots by punch pressing during their solidification. Numerical modelling and experimental validation of induced hot cracking and macrosegregation phenomena / Déformation des lingots d'acier par poinçon pressant pendant leur solidification. La modélisation numérique et validation expérimentale de la fissuration à chaud et les phénomènes de macroségrégation induite

Koshikawa, Takao 20 September 2016 (has links)
Ces travaux portent sur la déformation des aciers au cours de leur solidification, au moyen d'une expérience instrumentée et de sa simulation numérique. L'étude est focalisée sur deux phénomènes induits par la déformation : la fissuration à chaud et la macroségrégation. L'expérience consiste à poinçonner latéralement un lingot de 450 kg, alors que son cœur est encore partiellement liquide.L'expérience est instrumentée thermiquement et mécaniquement. Les lingots sont analysés, visuellement en termes de lieu et de fréquence d'apparition de fissures, et par microsonde pour les ségrégations chimiques.Pour la fissuration à chaud, une simulation numérique 3D par éléments finis est mise en œuvre avec le logiciel Thercast®, dans lequel a été implanté un critère d'amorçage de fissure basé sur la déformation plastique cumulée en fin de solidification, entre deux valeurs critiques de fraction de liquide. La comparaison entre simulations et observations montre le caractère prédictif du critère.La simulation numérique de la macroségré-gation est réalisée avec le logiciel R2sol qui résout simultanément la déformation du solide et l'écoulement du liquide. La simulation montre la redistribution des solutés dans le cœur du lingot sous l'effet de la compression du squelette solide et de l'écoulement du liquide, induits par le poinçonnement. Elle reproduit qualitativement les mesures expéri-mentales mais sous-estime l'amplitude des hétérogénéités de composition chimique. Une discussion des résultats permet de dégager des pistes permettant d'espérer une prédiction quantitative dans le futur.Les deux thématiques étudiées ont mis en relief la nécessité d'une bonne modélisation des phénomènes de microségrégation des alliages multiconstitués. Un modèle a été spécifiquement développé à cet effet. / Experimental and numerical studies of hot tearing and macrosegregation formation during steel solidification are reported. On one hand, an ingot punching test is considered. It consists of the application of a deformation at the surface of a solidifying 450 kg steel ingot. On the other hand, finite element thermo-mechanical modelling of the test is used.For hot tearing analysis, 3D finite element modeling is applied by use of Thercast® software. The time evolution of the strain tensor serves to evaluate the possibility for hot tear formation with a Hot Tearing Criterion (HTC). The HTC compares the local accumulation of strain over a certain solidification interval with the expression of a critical value proposed in the literature. Detailed comparisons reveal an excellent capability of the HTC to predict the formation of hot tears.For macrosegregation analysis, a two-phase formulation has been implemented (R2sol software), in which the velocities of the liquid and solid phases are concurrently solved for. The simulation shows how solutes are redistributed through the central mushy zone of the ingot under the effect of the com-pression of the solid phase resulting from the punching of the solid shell. The simulation proves its capability to reproduce the main experimental trends. However the predicted intensity of macrosegregation is lower than measured. Through discussion and analysis of different numerical sensitivity tests, critical material parameters and model improvements are identified in view of achieving better quantitative predictions in the future.The two topics studied have clearly shown the need for a good modelling of microsegregation phenomena in multicomponent alloys. A numerical model has especially been developed and implemented in the two software packages.

Page generated in 0.0918 seconds