• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 11
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 21
  • 15
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental and numerical investigation of turbulent flows in a square duct with 90deg bend

Ondore, Faustin Alloise January 1999 (has links)
No description available.
2

Heat transfer characteristics of slot jet impingement

Whitney, Christopher Francis January 1996 (has links)
No description available.
3

Modelling of fluid flow and heat transfer of decaying swirl in a heated annulus

Solnordal, Christopher Baard Unknown Date (has links) (PDF)
The fluid flow and heat transfer characteristics of the turbulent swirling flow of air through a heated annulus have been quantified. The motivation for this study was to improve the understanding of flow within a SIROSMELT top submerged industrial smelting lance. Within the lance, helical vane swirler flights are used to impart swirl to a coolant, so that heat transfer from the lance wall to the coolant is enhanced. A review of the literature revealed no information on the mean and turbulent flow structure for swirling flows in a heated annulus. (For complete abstract open document)
4

Žárový anemometr / Hot-wire anemometer

Búran, Martin January 2019 (has links)
The project deals with the effect of the airflow and temperature on the gold wirebond due to possible application in hot-wire anemometry. Theoretical fundamentals of wirebonding and hot-air anemometry are included in the text. From the area of anemometry, there is also a detailed description of measurement principles, areas of application and measuring instruments. The practical part of the text deals with design of the experimental sensor for hot-wire anemometry with use of the gold wirebond, including also the verification of the sensor's properties.
5

The Effects of Free Stream Turbulence on the Flow Field through a Compressor Cascade

Muthanna, Chittiappa 26 August 2002 (has links)
The flow through a compressor cascade with tip leakage has been studied experimentally. The cascade of GE rotor B section blades had an inlet angle of 65.1º, a stagger angle of 56.9º, and a solidity of 1.08. The final turning angle of the cascade was 11.8º. This compressor configuration was representative of the core compressor of an aircraft engine. The cascade was operated with a tip gap of 1.65%, and operated at a Reynolds number based on the chord length (0.254 m) of 388,000. Measurements were made at 8 axial locations to reveal the structure of the flow as it evolved through the cascade. Measurements were also made to reveal the effects of grid generated turbulence on this flow. The data set is unique in that not only does it give a comparison of elevated free stream turbulence effects, but also documents the developing flow through the blade row of a compressor cascade with tip leakage. Measurements were made at a total of 8 locations 0.8, 0.23 axial chords upstream and 0, 0.27, 0.48, 0.77, 0.98, and 1.26 axial chords downstream of the leading edge of the blade row for both inflow turbulence cases. The measurements revealed the formation and development of the tip leakage vortex within the passage. The tip leakage vortex becomes apparent at approximately X/ca= 0.27 and dominated much of the endwall flow. The tip leakage vortex is characterized by high streamwise velocity deficits, high vorticity and high turbulence kinetic energy levels. The result showed that between 0.77 and 0.98 axial chords downstream of the leading edge, the vortex structure and behavior changes. The effects of grid generated turbulence were also documented. The results revealed significant effects on the flow field. The results showed a 4% decrease in the blade loading and a 20% reduction in the vorticity levels within tip leakage vortex. There was also a shift in the vortex path, showing a shift close to the suction side with grid generated turbulence, indicating the strength of the vortex was decreased. Circulation calculations showed this reduction, and also indicated that the tip leakage vortex increased in size by about 30%. The results revealed that overall, the turbulence kinetic energy levels in the tip leakage vortex were increased, with the most drastic change occurring at X/ca= 0.77. / Ph. D.
6

Étude expérimentale de la turbulence dans une couche de mélange anisotherme / Expérimental study of turbulence in a non-isothermal mixing layer

Sodjavi, Kodjovi 11 March 2013 (has links)
L'étude porte sur une couche de mélange plane horizontale générée par la rencontre de deux écoulements parallèles à vitesse et température différentes. Le mélange turbulent est analysé pour différentes conditions initiales en termes de gradients de vitesse et de température. On distingue en particulier des configurations en régime de stratification stable et instable sous l'effet des forces de flottabilité. L'analyse des corrélations entre les fluctuations de vitesse et de température s'appuie sur la technique expérimentale d'anémométrie à température de fil variable (PCTA), qui permet la mesure instantanée de la vitesse et de la température en un même point grâce à la variation périodique et par palier du coefficient de surchauffe du fil chaud utilisé. Un premier travail a consisté à étendre la technique PCTA à l'utilisation de fils croisés pour la mesure simultanée de la température et de deux composantes de la vitesse. Dans un premier temps, les statistiques en un point permettent d'identifier les caractéristiques de l'écoulement dans la région de similitude et d'y établir les équations de bilan pour l'énergie cinétique turbulente, l'intensité des fluctuations de température et les flux de quantité de mouvement et de chaleur. Il apparaît, vu les faibles nombres de Richardson en jeu (Rif<0,03), que les forces de flottabilité sont quasi-négligeables devant les moteurs principaux du mouvement. Pourtant, ce forçage thermique peu énergétique est suffisant, en configuration instable, pour augmenter significativement le taux d'expansion et la contrainte de cisaillement, ce qui correspond de fait à une augmentation de la production de turbulence. L'analyse des densités de probabilité jointes permet ensuite de mettre en évidence les mécanismes et évènements qui contribuent significativement aux flux transversaux de quantité de mouvement et de chaleur. Ces différentes contributions sont différenciées et quantifiées par une analyse en quadrants qui fait ressortir la prépondérance des mouvements d'entraînement et d'éjection. On examine enfin les statistiques en deux points associées aux incréments de vitesse et de température. Le comportement de ces incréments est étudié à travers leurs densités de probabilité et leurs coefficients de dissymétrie et d'aplatissement. Les exposants des fonctions de structure confirment l'intermittence plus grande de la température par rapport à celle de la vitesse. Les différents termes des équations de Kolmogorov et de Yaglom sont mesurés. L'équilibre de ces bilans par échelle permet de quantifier le terme qui intègre les différents forçages proposés dans la littérature. / The turbulent mixing is studied in a plane mixing layer for a range of initial conditions applied in terms of velocity and temperature gradients between the two parallel inlet flows. A particular attention is paid to the effect of buoyancy forces, especially in the difference between the so-called stable and unstable configurations, in relation to the sign of the vertical temperature gradient applied. In this study, the novel experimental technique called PCTA, for Parameterizable Constant Temperature Anemometry, is used to enable the analysis of correlations between the velocity and temperature fluctuations. In a preliminary work, the PCTA technique, based on the implementation of repetitive multiple-overheat patterns to a hot wire, is extended and adapted for the instantaneous measurement of temperature and two components of velocity with X-wire probes. In a first stage, one point statistics are analysed. They provide a description of the flow features in the similarity region, where the balance equations for turbulent kinetic energy, temperature variance and the momentum and heat fluxes are established. Considering the low Richardson numbers at stake (Rif <0.03), the buoyancy forces appear logically to be quantitatively negligible compared to the main driving forces, but such a low energy forcing mechanism is in fact sufficient, in unstable configuration, to significantly increase the shear stress and the expansion rate of the mixing layer, both phenomena being associated to an enhanced production of turbulence. In a second stage, a joint probability density function analysis highlights the mechanisms and events that significantly contribute to the transverse momentum and heat fluxes. These contributions are differentiated and quantified through a quadrant analysis which emphasizes the dominance of the local movements of entrainment and ejection associated to the Kelvin-Helmholtz structures. Finally, the study focuses on the two points statistics associated with velocity and temperature increments. The behaviour of these increments is studied through their probability densities, examined along with the skewness and kurtosis coefficients. The structure function exponents confirm the stronger intermittency of temperature compared to that of the velocity. The different terms of the Kolmogorov and Yaglom equations are estimated. The balance of these scale budgets allows the quantification of the forcing term that has been introduced in the literature.
7

Análise experimental do escoamento transversal turbulento sobre dois cilindros paralelos fixos, com liberdade oscilatória e rotacional

Varela, Dolir Jose Climaco January 2017 (has links)
Este trabalho apresentada um estudo experimental do fenômeno de biestabilidade que ocorre na geometria simplificada de dois tubos dispostos lado a lado submetidos a um escoamento cruzado turbulento. Na análise consideram-se a condição de tubos fixos e com um grau de liberdade (rotacional), submetidos a diferentes números de Reynolds. A técnica experimental consiste na medição de flutuações de velocidade do escoamento através da anemometria de fio quente em canal aerodinâmico, na avaliação dos esforços do escoamento sobre os tubos com o uso de uma célula de carga e na visualização dos efeitos do fenômeno biestável sobre os tubos livres para rotacionar. Os dados obtidos da medição no canal são tratados com o uso de ferramentas estatísticas, espectrais e de ondaletas. Os resultados das visualizações do escoamento são apresentados através de imagens obtidas das filmagens realizadas com uma câmera digital. A investigação experimental consiste de ensaios de cilindros rígidos elasticamente montados e pivotados na base e posteriormente liberados para oscilar e/ou rotacionar em um eixo central aos dois tubos, submetidos ao escoamento perpendicular permanente de ar no canal Nos resultados experimentais observam-se a presença da biestabilidade e nota-se o comportamento não simultâneo deste fenômeno ao longo dos cilindros. A formação assimétrica das esteiras também é estudada e atribuída à interação entre os vórtices das esteiras, já que, inicialmente, o desprendimento dos vórtices atrás dos cilindros é simétrico. Na avaliação dos esforços por extensiometria, as etapas de condicionamento e aquisição do sinal foram elaboradas e os resultados de deformação mecânica apresentaram similaridade com o fenômeno observado na anemometria experimental. Para um número de Reynolds de 27635 encontrou-se uma força de 26,1 mN com um torque desenvolvido na célula de carga de 84,95Nmm. A técnica de visualização do fenômeno empregada corrobora a interpretação dos resultados obtidos através da técnica de anemometria de fio quente e extensiometria em canal aerodinâmico. / This paper presents an experimental study of the bistability phenomenon that occurs in the simplified geometry of two tubes arranged side by side submitted to a turbulent cross flow. In the analysis we consider the condition of fixed tubes and with a degree of freedom (rotational), submitted to different Reynolds numbers. The experimental technique consists in the measurement of velocity fluctuations through the aerodynamic channel with the hot wire anemometry technique, the evaluation of the stresses of the flow on the tubes with the use of a load cell and the visualization of the effects of the bistable phenomenon on the tubes free to rotate. The data obtained from the measurement in the channel are treated with the use of statistical, spectral and wavelet tools. The results of the flow visualizations are presented through images obtained with a high speed digital camera. The experimental investigation consists of tests of rigid cylinders mounted elastically and pivoted at the base and later released to oscillate and / or to rotate in a central axis to the two tubes, submitted to the flow of air in the channel In the experimental results we observe the presence of bistability and note the non-simultaneous behavior of the phenomenon along the cylinders. The asymmetric formation of the wakes is also studied and attributed to the interaction between the vortices from wakes behind the cylinders, since, initially, the wake detachments is symmetrical. In the evaluation of the forces by means of the extensiometry technique, the steps of conditioning and acquisition of the signal were elaborated and the results of mechanical deformation presented similarity with the phenomenon observed in the experimental anemometry. For a Reynolds number of 27635 a force of 26.1 mN was found with a torque developed in the load cell of 84.95 Nmm. The technique used for the visualization of the phenomenon corroborates the interpretation of the results obtained through hot wire anemometry and extensiometry in aerodynamic channel.
8

Determinação de parâmetros que caracterizam o fenômeno da biestabilidade em escoamentos turbulentos

Paula, Alexandre Vagtinski de January 2013 (has links)
Este trabalho apresenta um estudo acerca dos principais parâmetros que caracterizam o fenômeno da biestabilidade em dois tubos dispostos lado a lado submetidos a escoamento cruzado turbulento. A técnica experimental da anemometria de fio quente em canal aerodinâmico é aplicada na medição das flutuações de velocidade do escoamento após os tubos. As séries temporais obtidas são utilizadas como dados de entrada para determinação das funções densidade de probabilidade (PDF) usando um modelo de mistura finita, de acordo com uma função t de Student assimétrica e com o auxílio do método de Monte Carlo. Transformadas de ondaletas discretas e contínuas são aplicadas na filtragem das séries temporais para determinadas bandas de frequências e na análise do conteúdo de energia destes sinais. Através de conceitos de sistemas caóticos, é realizada a reconstrução do atrator do problema pelo método dos atrasos temporais, a partir das séries experimentais de velocidade, permitindo a determinação da dimensão de imersão e o cálculo do maior expoente de Lyapunov. Os resultados mostram a existência de dois patamares distintos de velocidade média nas séries temporais, correspondentes aos dois modos do escoamento, cada qual com números de Strouhal e funções densidade de probabilidade distintas. Uma análise conjunta das componentes axial e transversal do escoamento e suas PDF indicam as regiões no plano de medições onde o fenômeno se manifesta, sendo que reconstruções da trajetória filtrada das séries temporais para determinadas bandas de frequências apresentam características caóticodeterminísticas. O maior expoente de Lyapunov das séries experimentais é positivo, o que é um indício de comportamento caótico. / This work presents a study of the main parameters that characterize the phenomenon of bistability in two tubes placed side by side submitted to turbulent crossflow. The experimental technique of hot wire anemometry in aerodynamic channel is applied in the measurement of velocity fluctuations of the flow after the tubes. The time series obtained are used as input data for determining the probability density functions (PDF) using a finite mixture model, according to an asymmetric Student t function and with the aid of a Monte Carlo method. Wavelet transforms are applied in discrete and continuous filtering of time series for certain frequency bands and in the analysis of the energy content of these signals. By means of chaotic systems concepts, the attractor reconstruction of the problem is performed using the method of time delays from the experimental series of velocity, allowing the determination of the embedding dimension and calculating the largest Lyapunov exponent. The results show the existence of two different levels of mean velocity in time series, corresponding to two flow modes, each one with different Strouhal numbers and probability density functions. A joint analysis of axial and transverse components of flow and its PDF indicate the regions in the measurement plan where the phenomenon is manifested, and reconstructions of the trajectory of the filtered time series for certain frequency bands have chaotic-deterministic characteristics. The largest Lyapunov exponent of experimental series is positive, which is an indication of chaotic behavior.
9

Simultaneous and instantaneous measurement of velocity and density in rayleigh-taylor mixing layers

Kraft, Wayne Neal 15 May 2009 (has links)
There are two coupled primary objectives for this study of buoyancy-driven turbulence. The first objective is to create a new diagnostic for collection of measurements to capture the physics of Rayleigh-Taylor (RT) mixing. The second objective is to use the new diagnostic to specifically elucidate the physics of large Atwood number, ( )( )2 1 2 1 / ρ ρ ρ ρ + − = t A , RT mixing. Both of these objectives have been satisfied through the development of a new hot-wire diagnostic to study buoyancy-driven turbulence in a statistically steady gas channel of helium and air ( 6 . 0 03 . 0 ≤ ≤ t A ). The capability of the diagnostic to simultaneously and instantaneously measure turbulent velocity and density fluctuations allows for a unique investigation into the dynamics of Rayleigh-Taylor mixing layers at large At, through measurements of turbulence and mixing statistics. The new hot-wire diagnostic uses temperature as a fluid marker for helium and air, which is possible due to the Lewis number ~ 1 (Le = ratio of thermal diffusivity to mass diffusivity) for helium and air, and the new diagnostic has been validated in an At = 0.03 mixing layer. The energy density spectrum of v′ ′ ρ , measured experimentally for the first time in RT mixing, is found to closely follow the energy distribution of v′ , up to the Reynolds numbers investigated ( ( ) mix t h gA h υ 6 2 Re 2 / 3 = ~ 1450). Large At experiments, with At = 0.6, have also been achieved for the first time in a miscible RT mixing layer. An asymmetric penetration of the bubbles (rising fluid) and spikes (falling fluid) has been observed, resulting in measured self similar growth parameters αb = 0.060 and αs = 0.088 for the bubbles and spikes, respectively. The first experimental measurements of turbulent velocity and density fluctuations for the large At case, show a strong similarity to lower At behaviors when normalized. However conditional statistics, which separate the bubble (light fluid) and spike (heavy fluid) dynamics, has highlighted differences in v′ ′ ρ and rms v′ in the bubbles and spikes. Larger values of v′ ′ ρ and rms v′ were found in the downward falling spikes, which is consistent with the larger growth rates and momentum of the spikes compared to the bubbles. These conditional statistics are a first in RT driven turbulence.
10

Experimental study of passive scalar mixing in swirling jet flows

Örlü, Ramis January 2006 (has links)
<p>Despite its importance in various industrial applications there is still a lack of experimental studies on the dynamic and thermal field of swirling jets in the near-field region. The present study is an attempt to close this lack and provide new insights on the effect of rotation on the turbulent mixing of a <i>passive scalar</i>, on turbulence (joint) statistics as well as the turbulence structure.</p><p>Swirl is known to increase the spreading of free turbulent jets and hence to entrain more ambient fluid. Contrary to previous experiments, which leave traces of the swirl generating method especially in the near-field, the swirl was imparted by discharging a slightly heated air flow from an axially rotating and thermally insulated pipe (6 m long, diameter 60 mm). This gives well-defined axisymmetric streamwise and azimuthal velocity distributions as well as a well-defined temperature profile at the jet outlet. The experiments were performed at a <i>Reynolds</i> number of 24000 and a swirl number (ratio between the angular velocity of the pipe wall and the bulk velocity in the pipe) of 0.5.</p><p>By means of a specially designed combined X-wire and cold-wire probe it was possible to simultaneously acquire the instantaneous axial and azimuthal velocity components as well as the temperature and compensate the former against temperature variations. The comparison of the swirling and non-swirling cases clearly indicates a modification of the turbulence structure to that effect that the swirling jet spreads and mixes faster than its non-swirling counterpart. It is also shown that the streamwise velocity and temperature fluctuations are highly correlated and that the addition of swirl drastically increases the streamwise<i> passive scalar</i> flux in the near field.</p>

Page generated in 0.0709 seconds