1 |
A study of magnetoplasmadynamic effects in turbulent supersonic flows with application to detonation and explosionSchulz, Joseph C. 21 September 2015 (has links)
Explosions are a common phenomena in the Universe. Beginning with the Big Bang, one could say the history of the Universe is narrated by a series of explosions. Yet no matter how large, small, or complex, all explosions occur through a series of similar physical processes beginning with their initiation to their dynamical interaction with the environment. Of particular interest to this study is how these processes are modified in a magnetized medium. The role of the magnetic field is investigated in two scenarios. The first scenario addresses how a magnetic field alters the propagation of a gaseous detonation where the application of interest is the modification of a condensed-phase explosion. The second scenario is focused on the aftermath of the explosion event and addresses how fluid mixing changes in a magnetized medium. A primary focus of this thesis is the development of a numerical tool capable of simulating explosive phenomenon in a magnetized medium. While the magnetohydrodynamic (MHD) equations share many of the mathematical characteristics of the hydrodynamic equations, numerical methods developed for the conservation equations of a magnetized plasma are complicated by the requirement that the magnetic field must be divergent free. The advantages and disadvantages of the proposed method are discussed in relation to explosion applications.
|
2 |
Simultaneous and instantaneous measurement of velocity and density in rayleigh-taylor mixing layersKraft, Wayne Neal 15 May 2009 (has links)
There are two coupled primary objectives for this study of buoyancy-driven turbulence.
The first objective is to create a new diagnostic for collection of measurements to capture the
physics of Rayleigh-Taylor (RT) mixing. The second objective is to use the new diagnostic to
specifically elucidate the physics of large Atwood number, ( )( )2 1 2 1 / ρ ρ ρ ρ + − = t A , RT
mixing. Both of these objectives have been satisfied through the development of a new hot-wire
diagnostic to study buoyancy-driven turbulence in a statistically steady gas channel of helium
and air ( 6 . 0 03 . 0 ≤ ≤ t A ). The capability of the diagnostic to simultaneously and instantaneously
measure turbulent velocity and density fluctuations allows for a unique investigation into the
dynamics of Rayleigh-Taylor mixing layers at large At, through measurements of turbulence and
mixing statistics. The new hot-wire diagnostic uses temperature as a fluid marker for helium and
air, which is possible due to the Lewis number ~ 1 (Le = ratio of thermal diffusivity to mass
diffusivity) for helium and air, and the new diagnostic has been validated in an At = 0.03 mixing
layer. The energy density spectrum of v′ ′ ρ , measured experimentally for the first time in RT
mixing, is found to closely follow the energy distribution of v′ , up to the Reynolds numbers investigated ( ( ) mix t h gA h υ 6 2 Re 2 / 3 = ~ 1450). Large At experiments, with At = 0.6, have
also been achieved for the first time in a miscible RT mixing layer. An asymmetric penetration
of the bubbles (rising fluid) and spikes (falling fluid) has been observed, resulting in measured
self similar growth parameters αb = 0.060 and αs = 0.088 for the bubbles and spikes, respectively.
The first experimental measurements of turbulent velocity and density fluctuations for the large
At case, show a strong similarity to lower At behaviors when normalized. However conditional
statistics, which separate the bubble (light fluid) and spike (heavy fluid) dynamics, has
highlighted differences in v′ ′ ρ and rms v′ in the bubbles and spikes. Larger values of v′ ′ ρ and
rms v′ were found in the downward falling spikes, which is consistent with the larger growth rates
and momentum of the spikes compared to the bubbles. These conditional statistics are a first in
RT driven turbulence.
|
3 |
Fluid management in immersion and imprint microlithographyBassett, Derek William 31 January 2011 (has links)
The important roles of fluid dynamics in immersion lithography (IL) and step-and-flash imprint lithography (S FIL) are analyzed experimentally and theoretically. In IL there are many challenges with managing a fluid droplet between the lens and the wafer, including preventing separation of the fluid droplet from the lens and deposition of small droplets behind the lens. Fluid management is also critical in S FIL because the imprint fluid creates capillary and lubrication forces, both of which are primarily responsible for the dynamics of the template and fluid motion. The fluid flow and shape of the wafer determine how uniform the gap height between the wafer and the template is, and they affect the resistance during the alignment phase.
IL was investigated as a methodology to improve laser lithography for making photomasks. The fluid flow in IL was investigated by building a test apparatus to simulate the motion of the fluid droplet during microlithographic production, and using this apparatus to conduct experiments on various immersion fluids and wafer topcoats to determine what instabilities would occur. A theoretical model was used to predict the fluid separation instabilities. Finite element simulations were also used to model the fluid droplet, and these simulations accurately predict the fluid instabilities and quantitatively agreed with the model and experiments.
It is shown that the process is viable: capillary forces are sufficient to keep the fluid droplet stable, heating effects due to the laser are negligible, and other concerns such as evaporation and dissolution are manageable.
Euler beam theory and the lubrication equation were used to model the bending of an S FIL template and the flow of the fluid between the template and a non-flat wafer. The template filling time, conformance of the template to the wafer, and the alignment phase are investigated with an analytical model and finite element simulations. Analysis and simulations show that uniformity of the residual film thickness and ease of proper alignment depend greatly on the planarity of the wafer, the properties of the template, and the surface tension of the fluid. / text
|
Page generated in 0.0518 seconds