• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Insulinlike growth factor – binding protein-1 improves vascular endothelial repair in male mice in the setting of insulin resistance

Aziz, A., Haywood, N.J., Cordell, P.A., Smith, J., Yuldasheva, N.Y., Sengupta, A., Ali, N., Mercer, B.N., Mughal, R.S., Riches-Suman, Kirsten, Cubbon, R.M., Porter, K.E., Kearney, M.T., Wheatcroft, S.B. 2017 November 1924 (has links)
Yes / Insulin resistance is associated with impaired endothelial regeneration in response to mechanical injury. We recently demonstrated that insulinlike growth factor–binding protein-1 (IGFBP1) ameliorated insulin resistance and increased nitric oxide generation in the endothelium. In this study, we hypothesized that IGFBP1 would improve endothelial regeneration and restore endothelial reparative functions in the setting of insulin resistance. In male mice heterozygous for deletion of insulin receptors, endothelial regeneration after femoral artery wire injury was enhanced by transgenic expression of human IGFBP1 (hIGFBP1). This was not explained by altered abundance of circulating myeloid angiogenic cells. Incubation of human endothelial cells with hIGFBP1 increased integrin expression and enhanced their ability to adhere to and repopulate denuded human saphenous vein ex vivo. In vitro, induction of insulin resistance by tumor necrosis factor α (TNFα) significantly inhibited endothelial cell migration and proliferation. Coincubation with hIGFBP1 restored endothelial migratory and proliferative capacity. At the molecular level, hIGFBP1 induced phosphorylation of focal adhesion kinase, activated RhoA and modulated TNFα-induced actin fiber anisotropy. Collectively, the effects of hIGFBP1 on endothelial cell responses and acceleration of endothelial regeneration in mice indicate that manipulating IGFBP1 could be exploited as a putative strategy to improve endothelial repair in the setting of insulin resistance. / Funded by a British Heart Foundation Clinical Research Training Fellowship for A.A. R.M.C. holds a British Heart Foundation Intermediate Clinical Research Fellowship. M.T.K. holds a British Heart Foundation Chair in Cardiology. S.B.W. holds a European Research Council Starting Grant.
12

Metabolomics studies of ALS : a multivariate search for clues about a devastating disease

Wuolikainen, Anna January 2009 (has links)
Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease, motor neuron disease (MND) and Lou Gehrig’s disease, is a deadly, adult-onset neurodegenerative disorder characterized by progressive loss of upper and lower motor neurons, resulting in evolving paresis of the linked muscles. ALS is defined by classical features of the disease, but may present as a wide spectrum of phenotypes. About 10% of all ALS cases have been reported as familial, of which about 20% have been associated with mutations in the gene encoding for CuZn superoxide dismutase (SOD1). The remaining cases are regarded as sporadic. Research has advanced our understanding of the disease, but the cause is still unknown, no reliable diagnostic test exists, no cure has been found and the current therapies are unsatisfactory. Riluzole (Rilutek®) is the only registered drug for the treatment of ALS. The drug has shown only a modest effect in prolonging life and the mechanism of action of riluzole is not yet fully understood. ALS is diagnosed by excluding diseases with similar symptoms. At an early stage, there are numerous possible diseases that may present with similar symptoms, thereby making the diagnostic procedure cumbersome, extensive and time consuming with a significant risk of misdiagnosis. Biomarkers that can be developed into diagnostic test of ALS are therefore needed. The high number of unsuccessful attempts at finding a single diseasespecific marker, in combination with the complexity of the disease, indicates that a pattern of several markers is perhaps more likely to provide a diagnostic signature for ALS. Metabolomics, in combination with chemometrics, can be a useful tool with which to study human disease. Metabolomics can screen for small molecules in biofluids such as cerebrospinal fluid (CSF) and chemometrics can provide structure and tools in order to handle the types of data generated from metabolomics. In this thesis, ALS has been studied using a combination of metabolomics and chemometrics. Collection and storage of CSF in relation to metabolite stability have been extensively evaluated. Protocols for metabolomics on CSF samples have been proposed, used and evaluated. In addition, a new feature of data processing allowing new samples to be predicted into existing models has been tested, evaluated and used for metabolomics on blood and CSF. A panel of potential biomarkers has been generated for ALS and subtypes of ALS. An overall decrease in metabolite concentration was found for subjects with ALS compared to their matched controls. Glutamic acid was one of the metabolites found to be decreased in patients with ALS. A larger metabolic heterogeneity was detected among SALS cases compared to FALS. This was also reflected in models of SALS and FALS against their respective matched controls, where no significant difference from control was found for SALS while the FALS samples significantly differed from their matched controls. Significant deviating metabolic patterns were also found between ALS subjects carrying different mutations in the gene encoding SOD1.
13

Metabolomics studies of ALS a multivariate search for clues about a devastating disease /

Wuolikainen, Anna, January 2009 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2009. / Härtill 5 uppsatser. Även tryckt utgåva.
14

Non-human primate iPS cells for cell replacement therapies and human cardiovascular disease modeling

Rodriguez Polo, Ignacio 29 October 2019 (has links)
No description available.

Page generated in 0.0489 seconds