Spelling suggestions: "subject:"human bperformance aptimization"" "subject:"human bperformance anoptimization""
1 |
Mental readiness in rehabilitation (MR2): simple techniques for mental health integrationStone, Erin J. 04 January 2024 (has links)
Mental health (MH) concerns are becoming more prevalent, though the current United States adult population remains more inclined to seek care only for physical conditions. Clients with physical dysfunction are especially likely to experience an
exacerbation of MH concerns. The skilled, holistic practice scope of Occupational Therapy Practitioners (OTP) make them well suited to address both physical and MH needs. This program, Mental Readiness in Rehabilitation (MR2), provides holistic care planning education to OTPs. The MR2 is a one-hour education program that provides the background on MH in physical rehabilitation and offers practical skills training the Mental Readiness Screening Tool and the corresponding MH toolkit. This program educates OTPs on convenient, evidence-based skills to embed MH interventions for more holistic, comprehensive treatment plans. Plans for program implementation, funding, and evaluation of the MR2 program are included, as well as intent for the dissemination of program findings to advance the base of evidence for OTPs as qualified mental health
practitioners.
|
2 |
Development of Novel Wearable Sensor System Capable of Measuring and Distinguishing Between Compression and Shear Forces for Biomedical ApplicationsDimitrija Dusko Pecoski (8797031) 21 June 2022 (has links)
<p>There are no commercially available wearable shoe in-sole sensors that are capable of measuring and distinguishing between shear and compression forces. Companies have already developed shoe sensors that simply measure pressure and make general inferences on the collected data with elaborate software [2, 3, 4, 5]. Researchers have also attempted making sensors that are capable of measuring shear forces, but they are not well suited for biomedical applications [61, 62, 63, 64]. This work focuses on the development of a novel wearable sensor system that is capable of identifying and measuring shear and compression forces through the use of capacitive sensing. Custom hardware and software tools such as materials test systems and capacitive measurement systems were developed during this work. Numerous sensor prototypes were developed, characterized, and optimized during the scope of this project. Upon analysis of the data, the best capacitive measurement system developed in this work utilized the CAV444 IC chip, whereas the use of the Arduino-derived measurement system required data filtering using median and Butterworth zero phase low pass filters. The highest dielectric constant reported from optimization experiments yielded 9.7034 (+/- 0.0801 STD) through the use of 60.2% by weight calcium copper titanate and ReoFlex-60 silicone. The experiments suggest certain sensors developed in this work feasibly measure and distinguish between shear and compressional forces. Applications for such technology focus on improving quality of life in areas such as managing diabetic ulcer formation, preventing injuries, optimizing performance for athletes and military personnel, and augmenting the scope of motion capture in biomechanical studies.</p>
|
Page generated in 0.1222 seconds