• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 68
  • 25
  • 25
  • 17
  • 17
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Utilizing Convolutional Neural Networks for Specialized Activity Recognition: Classifying Lower Back Pain Risk Prediction During Manual Lifting

Snyder, Kristian 05 October 2020 (has links)
No description available.
32

Efficient Wearable Big Data Harnessing and Mining with Deep Intelligence

Elijah J Basile (13161057) 27 July 2022 (has links)
<p>Wearable devices and their ubiquitous use and deployment across multiple areas of health provide key insights in patient and individual status via big data through sensor capture at key parts of the individual’s body. While small and low cost, their limitations rest in their computational and battery capacity. One key use of wearables has been in individual activity capture. For accelerometer and gyroscope data, oscillatory patterns exist between daily activities that users may perform. By leveraging spatial and temporal learning via CNN and LSTM layers to capture both the intra and inter-oscillatory patterns that appear during these activities, we deployed data sparsification via autoencoders to extract the key topological properties from the data and transmit via BLE that compressed data to a central device for later decoding and analysis. Several autoencoder designs were developed to determine the principles of system design that compared encoding overhead on the sensor device with signal reconstruction accuracy. By leveraging asymmetric autoencoder design, we were able to offshore much of the computational and power cost of signal reconstruction from the wearable to the central devices, while still providing robust reconstruction accuracy at several compression efficiencies. Via our high-precision Bluetooth voltmeter, the integrated sparsified data transmission configuration was tested for all quantization and compression efficiencies, generating lower power consumption to the setup without data sparsification for all autoencoder configurations. </p> <p><br></p> <p>Human activity recognition (HAR) is a key facet of lifestyle and health monitoring. Effective HAR classification mechanisms and tools can provide healthcare professionals, patients, and individuals key insights into activity levels and behaviors without the intrusive use of human or camera observation. We leverage both spatial and temporal learning mechanisms via CNN and LSTM integrated architectures to derive an optimal classification architecture that provides robust classification performance for raw activity inputs and determine that a LSTMCNN utilizing a stacked-bidirectional LSTM layer provides superior classification performance to the CNNLSTM (also utilizing a stacked-bidirectional LSTM) at all input widths. All inertial data classification frameworks are based off sensor data drawn from wearable devices placed at key sections of the body. With the limitation of wearable devices being a lack of computational and battery power, data compression techniques to limit the quantity of transmitted data and reduce the on-board power consumption have been employed. While this compression methodology has been shown to reduce overall device power consumption, this comes at a cost of more-or-less information loss in the reconstructed signals. By employing an asymmetric autoencoder design and training the LSTMCNN classifier with the reconstructed inputs, we minimized the classification performance degradation due to the wearable signal reconstruction error The classifier is further trained on the autoencoder for several input widths and with quantized and unquantized models. The performance for the classifier trained on reconstructed data ranged between 93.0\% and 86.5\% accuracy dependent on input width and autoencoder quantization, showing promising potential of deep learning with wearable sparsification. </p>
33

SmartWall: Novel RFID-enabled Ambient Human Activity Recognition using Machine Learning for Unobtrusive Health Monitoring

Oguntala, George A., Abd-Alhameed, Raed, Noras, James M., Hu, Yim Fun, Nnabuike, Eya N., Ali, N., Elfergani, Issa T., Rodriguez, Jonathan 05 1900 (has links)
Yes / Human activity recognition from sensor readings have proved to be an effective approach in pervasive computing for smart healthcare. Recent approaches to ambient assisted living (AAL) within a home or community setting offers people the prospect of more individually-focused care and improved quality of living. However, most of the available AAL systems are often limited by computational cost. In this paper, a simple, novel non-wearable human activity classification framework using the multivariate Gaussian is proposed. The classification framework augments prior information from the passive RFID tags to obtain more detailed activity profiling. The proposed algorithm based on multivariate Gaussian via maximum likelihood estimation is used to learn the features of the human activity model. Twelve sequential and concurrent experimental evaluations are conducted in a mock apartment environment. The sampled activities are predicted using a new dataset of the same activity and high prediction accuracy is established. The proposed framework suits well for the single and multi-dwelling environment and offers pervasive sensing environment for both patients and carers. / Tertiary Education Trust Fund of Federal Government of Nigeria and by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement H2020-MSCA-ITN-2016 SECRET-722424
34

Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks / Objektiv igenkänning av mänsklig aktivitet från accelerometerdata med (mer eller mindre) djupa neurala nätverk

Broomé, Sofia January 2017 (has links)
This thesis concerns the application of different artificial neural network architectures on the classification of multivariate accelerometer time series data into activity classes such as sitting, lying down, running, or walking. There is a strong correlation between increased health risks in children and their amount of daily screen time (as reported in questionnaires). The dependency is not clearly understood, as there are no such dependencies reported when the sedentary (idle) time is measured objectively. Consequently, there is an interest from the medical side to be able to perform such objective measurements. To enable large studies the measurement equipment should ideally be low-cost and non-intrusive. The report investigates how well these movement patterns can be distinguished given a certain measurement setup and a certain network structure, and how well the networks generalise to noisier data. Recurrent neural networks are given extra attention among the different networks, since they are considered well suited for data of sequential nature. Close to state-of-the-art results (95% weighted F1-score) are obtained for the tasks with 4 and 5 classes, which is notable since a considerably smaller number of sensors is used than in the previously published results. Another contribution of this thesis is that a new labeled dataset with 12 activity categories is provided, consisting of around 6 hours of recordings, comparable in number of samples to benchmarking datasets. The data collection was made in collaboration with the Department of Public Health at Karolinska Institutet. / Inom ramen för uppsatsen testas hur väl rörelsemönster kan urskiljas ur accelerometerdatamed hjälp av den gren av maskininlärning som kallas djupinlärning; där djupa artificiellaneurala nätverk av noder funktionsapproximerar mappandes från domänen av sensordatatill olika fördefinerade kategorier av aktiviteter så som gång, stående, sittande eller liggande.Det finns ett intresse från den medicinska sidan att kunna mäta fysisk aktivitet objektivt,bland annat eftersom det visats att det finns en korrelation mellan ökade hälsorisker hosbarn och deras mängd daglig skärmtid. Denna typ av mätningar ska helst kunna göras medicke-invasiv utrustning till låg kostnad för att kunna göra större studier.Enklare nätverksarkitekturer samt återimplementeringar av bästa möjliga teknik inomområdet Mänsklig aktivitetsigenkänning (HAR) testas både på ett benchmarkingdataset ochpå egeninhämtad data i samarbete med Institutet för Folkhälsovetenskap på Karolinska Institutetoch resultat redovisas för olika val av möjliga klassificeringar och olika antal dimensionerper mätpunkt. De uppnådda resultaten (95% F1-score) på ett 4- och 5-klass-problem ärjämförbara med de bästa tidigare publicerade resultaten för aktivitetsigenkänning, vilket äranmärkningsvärt då då betydligt färre accelerometrar har använts här än i de åsyftade studierna.Förutom klassificeringsresultaten som redovisas bidrar det här arbetet med ett nyttinhämtat och kategorimärkt dataset; KTH-KI-AA. Det är jämförbart i antal datapunkter medspridda benchmarkingdataset inom HAR-området.
35

Step Counter and Activity Recognition Using Smartphone IMUs

Israelsson, Anton, Strandell, Max January 2022 (has links)
Fitness tracking is a rapidly growing market as more people desire to take better control over their lives. And the growing availability of smartphones with sensitive sensors makes it possible for anyone to take part. This project aims to implement a Step Counter and create a model for Human Activity Recognition (HAR) to classify activities such as walking, running, cycling, ascending and descending stairs, and standing still, using sensor data from handheld devices. The Step Counter is implemented by processing acceleration data and finding and validating steps. HAR is implemented using three machine learning algorithms on processed sensor data: Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN). The step counter achieved 99.48% accuracy. The HAR models achieved 99.7%, 99.6%, and 99.5% accuracy on RF, ANN, and SVM, respectively. / Aktivitetsspårning är en snabbt växande marknad när fler människor önskar att ta bättre kontroll över deras liv. Den växande tillgängligheten på smartphones med känsliga sensorer gör det möjligt för vem som helst att delta. Detta projekt siktar på att implementera en stegräknare samt skapa en modell för mänsklig aktivitetsigenkänning (HAR) för att klassificera aktiviteter såsom att promenera, springa, cykla, gå upp eller ner för trappor och stå stilla, med användning av sensordata från handhållna enheter. Stegräknaren implementeras genom att bearbeta accelerationsdata och hitta samt validera steg. HAR implementeras med hjälp av tre maskininlärningsalgoritmer på bearbetad sensordata: Random Forest (RF), Support Vector Machine (SVM) och Artificial Neural Network (ANN). Stegräknaren uppnådde en noggrannhet på 99.48%. HAR-modellerna uppnådde en noggrannhet på 99.7%, 99.6% samt 99.5% med RF, ANN och SVM. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
36

A Methodology for Extracting Human Bodies from Still Images

Tsitsoulis, Athanasios January 2013 (has links)
No description available.
37

Non-Bayesian Out-of-Distribution Detection Applied to CNN Architectures for Human Activity Recognition

Socolovschi, Serghei January 2022 (has links)
Human Activity Recognition (HAR) field studies the application of artificial intelligence methods for the identification of activities performed by people. Many applications of HAR in healthcare and sports require the safety-critical performance of the predictive models. The predictions produced by these models should be not only correct but also trustworthy. However, in recent years it has been shown that modern neural networks tend to produce sometimes wrong and overconfident predictions when processing unusual inputs. This issue puts at risk the prediction credibility and calls for solutions that might help estimate the uncertainty of the model’s predictions. In the following work, we started the investigation of the applicability of Non-Bayesian Uncertainty Estimation methods to the Deep Learning classification models in the HAR. We trained a Convolutional Neural Network (CNN) model with public datasets, such as UCI HAR and WISDM, which collect sensor-based time-series data about activities of daily life. Through a series of four experiments, we evaluated the performance of two Non-Bayesian uncertainty estimation methods, ODIN and Deep Ensemble, on out-of-distribution detection. We found out that the ODIN method is able to separate out-of-distribution samples from the in-distribution data. However, we also obtained unexpected behavior, when the out-of-distribution data contained exclusively dynamic activities. The Deep Ensemble method did not provide satisfactory results for our research question. / Inom området Human Activity Recognition (HAR) studeras tillämpningen av metoder för artificiell intelligens för identifiering av aktiviteter som utförs av människor. Många av tillämpningarna av HAR inom hälso och sjukvård och idrott kräver att de prediktiva modellerna har en säkerhetskritisk prestanda. De förutsägelser som dessa modeller ger upphov till ska inte bara vara korrekta utan också trovärdiga. Under de senaste åren har det dock visat sig att moderna neurala nätverk tenderar att ibland ge felaktiga och överdrivet säkra förutsägelser när de behandlar ovanliga indata. Detta problem äventyrar förutsägelsernas trovärdighet och kräver lösningar som kan hjälpa till att uppskatta osäkerheten i modellens förutsägelser. I följande arbete inledde vi undersökningen av tillämpligheten av icke-Bayesianska metoder för uppskattning av osäkerheten på Deep Learning-klassificeringsmodellerna i HAR. Vi tränade en CNN-modell med offentliga dataset, såsom UCI HAR och WISDM, som samlar in sensorbaserade tidsseriedata om aktiviteter i det dagliga livet. Genom en serie av fyra experiment utvärderade vi prestandan hos två icke-Bayesianska metoder för osäkerhetsuppskattning, ODIN och Deep Ensemble, för upptäckt av out-of-distribution. Vi upptäckte att ODIN-metoden kan skilja utdelade prover från data som är i distribution. Vi fick dock också ett oväntat beteende när uppgifterna om out-of-fdistribution uteslutande innehöll dynamiska aktiviteter. Deep Ensemble-metoden gav inga tillfredsställande resultat för vår forskningsfråga.
38

Human Activity Recognition Using Wearable Inertia Sensor Data adnd Machine Learning

Xiaoyu Yu (7043231) 16 August 2019 (has links)
Falling in indoor home setting can be dangerous for elderly population (in USA and globally), causing hospitalization, long term reduced mobility, disability or even death. Prevention of fall by monitoring different human activities or identifying the aftermath of fall has greater significance for elderly population. This is possible due to the availability and emergence of miniaturized sensors with advanced electronics and data analytics tools. This thesis aims at developing machine learning models to classify fall activities and non-fall activities. In this thesis, two types of neural networks with different parameters were tested for their capability in dealing with such tasks. A publicly available dataset was used to conduct the experiments. The two types of neural network models, convolution and recurrent neural network, were developed and evaluated. Convolution neural network achieved an accuracy of over 95% for classifying fall and non-fall activities. Recurrent neural network provided an accuracy of over 97% accuracy in predicting fall, non-fall and a third category activity (defined in this study as “pre/postcondition”). Both neural network models show high potential for being used in fall prevention and management activity. Moreover, two theoretical designs of fall detection systems were proposed in this thesis based on the developed convolution and recurrent neural networks.
39

Human Activity Recognition and Control of Wearable Robots

January 2018 (has links)
abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants. / Dissertation/Thesis / Doctoral Dissertation Aerospace Engineering 2018
40

SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING BIDIRECTIONAL LSTM FOR CLOSELY RELATED ACTIVITIES

Pavai, Arumugam Thendramil 01 December 2018 (has links)
Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons with 4 trials per activity per person. A comparison of this BLSTM model is made with the Unidirectional LSTM model. It is observed that there is a significant improvement in the accuracy for recognition of all 27 activities in the case of BLSTM than LSTM.

Page generated in 0.1304 seconds