• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The functional role of HCMV miRNAs

Pavelin, Jonathan Andrew January 2016 (has links)
miRNAs are a species of small-regulatory RNA that post-transcriptionally regulate gene expression via the RNA induced silencing complex (RISC). They are encoded ubiquitously among animals and plants, and have recently been shown to be encoded by the majority of herpesviruses. It seems likely that herpesvirus encoded miRNAs have evolved as a tool for the manipulation of host-cellular and viral-gene expression during infection. Human cytomegalovirus (HCMV) is a clinically important herpesvirus that represents a significant cause of morbidity and mortality in the immune-compromised. HCMV encodes as many as 25 miRNAs during infection, but the function of the majority of these is not known. Identifying the targets of HCMV miRNAs will not only establish a basis for understanding the role of miRNAs within the context of HCMV infection, but also provide a means for discovering novel host-virus interactions. Using RISC immunoprecipitation and siRNA screening, host-cellular targets of viral miRNAs that play important roles in the biology of HCMV were identified. ATP6VOC, a key component of the vacuolar-ATPase, was shown to be a target of miR-US25-1 and subsequent siRNA knockdown of ATP6VOC resulted in the almost complete inhibition of infectious virion production. Despite this, ATP6VOC knock-down did not inhibit viral entry, DNA synthesis, or gene expression, highlighting a possible role for ATP6VOC in the assembly and egress of HCMV. A critical step in HCMV assembly and egress is the formation of the juxta-nuclear virion assembly compartment (VAC). The HCMV VAC is derived from host-cellular endocytic and secretory vacuoles, and is crucial for the efficient nuclear egress of nucleocapsids, cyotplasmic tegumentation, final envelopment, and the egress of mature virions. Using siRNA knock-down, immunofluorescence-microscopy, and western-blot analysis, a crucial role for ATP6VOC and v-ATPase function in the formation of the VAC was demonstrated. siRNA knock-down of ATP6VOC resulted in a failure in the reorganisation of trans-golgi and early-endosomal compartments during infection, resulting in a failure in VAC formation. These findings demonstrate a crucial role for ATP6VOC during infection, and in so doing identify a novel host factor that is required for HCMV assembly.
2

In vitro investigation of the role of human cytomegalovirus glycoprotein polymorphisms in disease pathogenesis

Abdulhakim, Jawaher January 2018 (has links)
HCMV is a common viral pathogen that infects most of the world's population by early adulthood. It is typically asymptomatic in immunologically healthy individuals but causes severe disease in immunocompromised patients and congenitally infected infants. HCMV glycoproteins are highly polymorphic, and various types of associations have been suggested between glycoprotein types and the pathogenicity of the virus. Several studies on viruses other than HCMV have related the glycosylation of the viral glycoproteins to virulence. This project aimed to determine whether there is a robust relationship between the individual glycoprotein sequence and its glycosylation, how this influences the growth characteristic of the virus and whether this is related to its pathogenicity. Glycosylation patterns of 89 clinical specimens of different infection categories and specimen types were correlated with genetic sequence alterations of the virus glycoproteins (gB, gH, gL, gM, gN, gO), followed by determining whether mutation results in specific changes in glycosylation. The aim was approached using a cell culture model and a quantitative lectin-based assay (ELLA). A significantly increased glycosylation level for the following genotypes: mixed gH, gN4a, gO4, mixed gL was detected. Whereas a decreased pattern was found to be associated with gH1, gH2, gN3a, gO1a and gL2 genotypes (P < 0.05). Glycoproteins of strains isolated from respiratory specimens were significantly highly glycosylated compared to the blood and urine samples, and from blood specimens compared to the urine samples (P < 0.05). Furthermore, strains from congenitally infected infants and urine samples had a significantly higher growth rate than others tested. No direct association between the virus growth and its virulence was found. These findings demonstrate that glycosylation of glycoproteins in HCMV is affected by the glycoprotein polymorphisms and signifies a potentially important mechanism for avoidance of antibody-mediated neutralization, which, in turn, facilitates HCMV pathogenicity. This phenomenon requires further study and may have application for the selection of novel targets for diagnosis, vaccine development and other preventive measures to combat diseases caused by this virus.
3

Suppressor of Cytokine Signaling (SOCS)1 and SOCS3 Stimulation during Experimental Cytomegalovirus Retinitis: Virologic, Immunologic, or Pathologic Mechanisms

Alston, Christine I. 06 January 2017 (has links)
AIDS-related human cytomegalovirus (HCMV) retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. Understanding the pathogenesis of this disease is essential for developing new, safe, and effective treatments for its prevention or management, yet much remains unknown about the virologic and immunologic mechanisms contributing to its pathology. To study such mechanisms, we use a well-established, reproducible, and clinically relevant animal model with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) that mimics in mice the symptoms and progression of AIDS in humans. Over 8 to 12 weeks, MAIDS mice become susceptible to experimental murine cytomegalovirus (MCMV) retinitis. We have found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling (SOCS)1 and SOCS3, host proteins which dampen immune-related signaling by cytokines, including antiviral interferons. Herein we investigated virologic and/or immunologic mechanisms involved in this stimulation and how virally-modulated SOCS1 and/or SOCS3 proteins may contribute to MCMV infection or experimental MAIDS-related MCMV retinitis. Through pursuit of two specific aims, we tested the central hypothesis that MCMV stimulates and employs SOCS1 and/or SOCS3 to induce the onset and development of MCMV retinal disease. MCMV-related SOCS1 and SOCS3 stimulation in vivo occurred with intraocular infection, was dependent on method and stage of immune suppression and severity of ocular pathology, was associated with stimulation of SOCS-inducing cytokines, and SOCS1 and SOCS3 were differentially sensitive to antiviral treatment. In vitro studies further demonstrated that SOCS1 and SOCS3 stimulation during MCMV infection occurred with expected immediate early kinetics, required viral gene expression in cell-type-dependent and virus origin-dependent patterns of expression, and displayed differential sensitivity to antiviral treatment. These data suggest that SOCS1 and SOCS3 are stimulated by divergent virologic, immunologic, and/or pathologic mechanisms during MCMV infection, and that they contribute to the pathogenesis of retinal disease, revealing new insights into the pathophysiology of AIDS-related HCMV retinitis.
4

Systematic analysis of host-cell interactions during human cytomegalovirus infection

Chiweshe, Stephen Masaka January 2017 (has links)
Viruses are obligate intracellular pathogens. Therefore, their successful replication, at every stage from attachment to assembly and egress, is dependent on host cell functions. The host cell in turn engages mechanisms to counteract virus replication. As a result, viruses have evolved mechanisms to evade these counteracting measures as well as ways to reshape the cellular environment into one that’s favourable for successful replication. Systematic studies offer a platform for unravelling virus-cell interactions and in particular can address three important aspects 1) increase our understanding of basic biology of the virus, 2) identify and characterise novel cellular functions 3) provide important leads for novel targets for antiviral therapy. In this study, I investigated two aspects of virus host interaction; the role of microRNAs (miRNAs) in virus infection and the role of interferon inducible genes in virus infection. Human cytomegalovirus (HCMV) is a β herpes virus that infects humans. HCMV maintains a persistent lifelong infection in the host involving a cycle of latency and reactivation. Infection of healthy individuals with HCMV results in relatively minor symptoms. In contrast, infection of individuals with a compromised immune system, as in the case of organ transplant recipients and AIDS patients, can cause significant morbidity and mortality. In common with other herpes viruses, HCMV expresses multiple small regulatory RNAs called miRNAs. HCMV encodes at least 14 miRNAs. Identifying the targets of these miRNAs will help us understand their functional importance during infection. Recently, a biochemical technique called Cross-Linking, Ligation and Sequencing of Hybrids (CLASH), was developed by Tollervey and colleagues, representing the most advanced systematic technique for the identification of miRNA targets. We adapted this approach to identify high confidence miRNA targets during HCMV infection. However, the protocol was sub-optimal and presented us with technical challenges. Although high quality data sets were not generated, the work was crucial for the establishment of the system which is now generating promising data. Virus-cell interactions can also be elucidated by probing for host factors that are important for virus replication. Type I interferon is a highly effective inhibitor of HCMV replication. Treatment of cells with interferon results in up regulation of multiple effectors known as interferon stimulated genes (ISGs). How these genes block HCMV replication is poorly understood. A library of more than 380 ISG expressing lentiviruses was screened to determine the effects of individual ISGs on HCMV replication. The screen was performed in primary human fibroblast cells and a glioblastoma cell line called U373s. Multiple inhibitory ISGs were identified including well characterised ISGs such as cGAS, STAT2, NOD2, DDX60 and HPSE as well as novel candidates TXNIP, ELF1, FAM46C, MT1H and CHMP5. Five ISGs were identified as HCMV replication enhancers including previously published ISGs BST2 and IFITM1 and novel enhancers ODC1, BCL3 and IL28RA. siRNA screens against top hits demonstrated that STAT2, CPT1A and cGAS are dominant inhibitory factors during HCMV infection and knockdown of these genes can partially rescue HCMV replication following interferon treatment. Finally, using a corresponding rhesus ISG library we show that rhesus SAMHD1 effectively inhibits HCMV replication while human SAMHD1 has no effect, suggesting that HCMV expresses a species-specific inhibitor of SAMHD1. This study defines interferon stimulated pathways important for HCMV replication and identifies multiple novel host factors that both restrict and enhance HCMV replication. These studies demonstrate the effectiveness of using systematic approaches for the identification of novel host virus interactions.
5

Characterization of natural Killer cell response to human entomegalovirus infected dentrilic cells

Magri, Giuliana 31 March 2011 (has links)
S'ha establert un sistema experimental autòleg per a poder estudiar la resposta de les cèl.lules Natural Killer (NK) contra les cèl.lules dendrítiques derivades de monòcits (moDC), infectades pel Cytomegalovirus humà (HCMV). Els nostres resultats mostren que les cèl.lules NK responen contra les moDC infectades per HCMV, que presenten una expressió de les molècules MHC de classe I a superficie reduïda. Específicament, demostrem que la infecció per HCMV disminueix l'expressió en superficie d'HLA-E en les moDC, alliberant així la inhibició de les cèl.lules NK NKG2A+. Mostrem que els NKR anomenats NKp46 i DNAM-1 tenen un paper dominant en el reconeixement de les moDC infectades per HCMV i evidenciem la importància de la dinàmica dels mecanismes d'immunoevassió en la susceptibilitat a la resposta NK. Finalment, trobem que els interferons de tipus I i la IL-12 secretats en resposta a la infecció per HCMV, a més de participar en l'activació de la cèl.lula NK i en la secreció d'IFN-, inhibeixen l'expressió i la funció de NKG2D en les cèl.lules NK, com un mecanisme de regulació potencial per prevenir la reactivitat NK contra cèl.lules veïnes sanes. / Suitable experimental conditions have been established to dissect the role of NK cell receptors (NKR) and cytokines in the NK cell response against autologous human cytomegalovirus (HCMV) infected monocyte derived dendritic cells (moDC). Our results reveal that NK cells are capable of responding to HCMV infected moDC that have down-regulated surface MHC class I molecules. In particular, we prove that HCMV infection decreases surface HLA-E expression on moDC, thus releasing NKG2A+ NK cells from inhibition. We show that NKp46 and DNAM-1 NKR play a dominant role in the recognition of HCMV infected moDC and we provide evidences stressing the importance of the dynamics of viral immune evasion mechanisms in NK cell susceptibility. Finally, we find that type I interferons and IL-12 secreted in response to HCMV infection, beyond their participation in NK cell activation and IFN- secretion, transiently inhibit the expression and function of NKG2D in NK cells, thus providing a potential regulatory feedback mechanism to prevent NK cell reactivity against bystander healthy cells.
6

Characterization of UL1, a member of the human cytomegalovirus RL11 gene family

Shikhagaie, Medya 07 November 2011 (has links)
In the present study, we have approached the molecular characterization of the HCMV specific UL1. To this end a HCMV (AD169-derived HB5 background) recombinant with an HA-epitope tagged UL1 and a mutant with a full UL1 deletion in the endotheliotropic HCMV TB40/E strain were generated. Our data reveal that the UL1 is transcribed with late kinetics. pUL1 is glycosylated and localizes at the site of virus assembly and secondary envelopment in infected cells forming part of the envelope of HCMV virions. A HCMV mutant with a targeted deletion of UL1 exhibits a growth defect phenotype in retinal pigment epithelium cells but not in fibroblasts, indicating that this ORF encodes a cell-type specific tropism factor. / En aquest treball hem investigat la pauta oberta de lectura de UL1 del Cytomegalovirus humà (HCMV), el gen UL1 es específic del HCMV. Hem caracteritzat la proteïna UL1 modificada amb un epítop HA en la soca HB5, derivada de AD169. L'UL1 s’expressa com una glicoproteïna que es pot detectar a les 48 i 72h post-infecció. En fibroblasts humans infectats, UL1 co-localitza al citoplasma, al lloc d’assemblatge del virió, amb proteïnes estructurals del virus. A més a més, els anàlisis de virions AD169 purificats que contenen UL1-HA mostren que UL1 és un nou constituent de l’envolta del HCMV. La delecció de UL1 en el context de la soca TB40/E del HCMV disminueix el creixement viral de manera selectiva en determinats tipus cel•lulars, suggerint que UL1 podria estar involucrat en la regulació del tropisme cel•lular del HCMV.
7

The role of human cytomegalovirus encoded viral G protein-coupled receptors in onco-modulatory signalling

Subramoney, Preya 22 June 2011 (has links)
Human cytomegalovirus (HCMV) is a ubiquitous virus of the herpes type that infects a high percentage of some populations. One of the most researched genes expressed by HCMV with close homology to human chemokine receptors is the US28 G protein-coupled receptor. Study design: This study was initiated to elucidate the intracellular signalling pathways of an inflammatory factor (IL-6) and an angiogenic factor (STAT3) triggered by the viral US28 oncogene and the presence of US28 in the HCMV viral particle. These pathways were observed by introducing the US28 gene into two human cell lines by infection with a HCMV strain that expresses the US28 gene (wild type), and two HCMV strains where the US28 gene was deleted (ÄUS28 and ÄUS28/UL33). Special attention was directed at the expression of IL-6 after promotion of the US28 gene and subsequent phosphorolation of STAT3. A new US28 antibody was validated and a method developed in an attempt to determine US28 on the viral particle. The following techniques were applied: Cell culture work, two mammalian cell lines were used, HFF’s and U373 MG. Virus stock titre determination to determine the multiplicity of infection. Protein quantitation to determine very small quantities of protein for Western blot analysis. ELISA for the quantitative determination of IL-6. Western blotting for phospho- STAT3 determination and validation of the US28 antibody. Immunocytochemistry was used for back titrations of virally infected cells. Immunofluorescence assay and use of confocal microscopic techniques was used for the location of the US28 gene in the virion and for tSTAT3 translocation to the nucleus. Conclusion: A clear increase in IL-6 secretion (495% ± 1%) was seen, and this was after only an hour in HCMV WT infected cells. From the increase in IL-6 secretion a subsequent increase in STAT3 phosphorylation was detected in the same samples. A clear link has been established between IL-6 and STAT3. A method to determine whether US28 was present in the HCMV viral particle was designed and preliminary results obtained. The results were inclusive. / Dissertation (MSc)--University of Pretoria, 2011. / Pharmacology / unrestricted
8

Die Rolle des Proteasoms für die Replikation des humanen Cytomegalievirus

Kaspari, Marion 15 September 2009 (has links)
Das Humane Cytomegalievirus (HCMV) ist ein ubiquitäres Pathogen, welches den Metabolismus der Wirtszelle auf vielfältige Weise manipuliert, um seine eigene Vermehrung zu begünstigen. In der vorliegenden Arbeit konnte nachgewiesen werden, dass auch das Ubiquitin-Proteasom-System in die HCMV-Replikation involviert ist. So konnte zunächst gezeigt werden, dass die Chymotrypsin-ähnliche (CT-L) Aktivität des konstitutiven Proteasoms in HCMV-infizierten Zellen signifikant erhöht ist. Wurde die CT-L Proteasomaktivität durch Proteasominhibitoren (PI) blockiert, so hatte dies die Hemmung der HCMV-Replikation zur Folge. Die Charakterisierung des Einflusses von PI auf die virale Proteinexpression ergab, dass bei niedriger MOI (MOI 0.1) deutlich verringerte Mengen der sehr frühen Proteine vorlagen, dieser Effekt jedoch bei hoher MOI (ab MOI 1) aufgehoben war. Die Expression früher Proteine war MOI-unabhängig reduziert. Hingegen war die Expression der späten Proteine MOI-unabhängig vollständig unterdrückt. Studien mit dem Nukleosidanalogon BrdU ergaben zudem, dass die de novo Synthese viraler DNA blockiert war. Um erste Hinweise auf den Wirkungsmechanismus von PI zu erhalten, wurde untersucht, ob der Transkriptionsfaktor NF-kappaB oder zelluläre Transkriptionsrepressoren wie z.B. hDaxx am anti-HCMV-Effekt beteiligt sind. Durch die Charakterisierung einer Virusmutante mit Deletion der NF-kappaB-Bindestellen im MIE-Enhancer/Promotor konnte gezeigt werden, dass der antivirale Effekt von PI nicht auf der Hemmung der Aktivierung von NF-kappaB beruht. Experimente mit hDaxx-knockdown Zellen ergaben hingegen, dass die Stabilisierung des Transkriptionsrepressors hDaxx partiell zum anti-HCMV-Effekt von PI beiträgt. Darüber hinaus müssen jedoch weitere virale oder zelluläre Zielproteine existieren, deren Beeinflussung durch PI kritisch für die Virusreplikation ist. Zusammenfassend stellt das Proteasom somit einen neu identifizierten potentiellen Angriffspunkt für die anti-HCMV-Therapie dar. / The Human Cytomegalovirus (HCMV) is a ubiquitous pathogen that manipulates many aspects of the host cell metabolism to enhance viral replication. This work demonstrates that the ubiquitin-proteasome system is also involved in HCMV replication. First of all, the chymotrypsin-like (CT-L) activity of the constitutive proteasome was significantly increased in HCMV infected cells. In the presence of proteasome inhibitors (PI) viral replication was efficiently blocked. Characterisation of the influence of PI on viral protein expression showed that immediate early protein expression was clearly reduced at low MOI (MOI 0.1); however, this effect was abolished at high MOI (starting from MOI 1). Expression of early proteins was significantly decreased independently of the MOI used for infection. In contrast, late protein expression was completely suppressed at both low and high MOI. Additionally, studies using the nucleoside analogue BrdU showed that PI block the de novo synthesis of viral DNA. In order to gain insight into the working mechanism of PI the involvement of the transcription factor NF-kappaB and cellular repressors of transcription (e.g. hDaxx) in the antiviral effect of PI was examined. Studies using a mutant virus carrying deletions of the NF-kappaB binding sites in the MIE-enhancer/promoter revealed that the anti-HCMV effect of PI is not due to inhibition of NF-kappaB activation. Analyses using hDaxx-knockdown cells showed that stabilisation of the transcriptional repressor hDaxx partially contributes to the antiviral effect of PI. However, the existence of additional viral or cellular target proteins of PI is very likely. In summary, the proteasome thus represents a newly identified and promising target for anti-HCMV therapy.
9

Nový chimérický antigenní receptor (CAR) pro terapii infekce lidským cytomegalovirem (HCMV) / New chimeric antigen receptor (CAR) for therapy of human cytomegalovirus (HCMV) infection

Kroutilová, Marie January 2018 (has links)
Human cytomegalovirus (HCMV, Herpesviridae) can cause severe complications in the infected individuals undergoing hematopoietic stem cell transplantation. Nowadays, these patients are treated using antivirotics or HCMV-specific T cells derived from the seropositive graft donor. This study explored the possibility of redirecting HCMV-non-specific T cells from a seronegative donor towards HCMV-infected cells via chimeric antigen receptor (CAR), i.e. artificially designed T cell receptor. Viral glycoprotein B (gB) has been selected as a target for this receptor. Published sequence of a single chain variable fragment of a human antibody was used for the design of the CAR against gB (gBCAR). After the verification of production and surface localization in cell lines, gBCAR was being introduced into human T cells via lentiviral vectors. Human fetal lung fibroblasts (LEP) infected with HCMV were used as target cells after the expression of gB at their surface was demonstrated. gBCAR functionality was evaluated by the incubation of modified T cells with infected cells and subsequent analysis of media for IFNγ concentration, which was significantly higher in the setting of gBCAR T cells incubated with HCMV-LEP than in the control incubations. The results obtained show the specificity of gBCAR against...

Page generated in 0.0588 seconds