• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 37
  • 37
  • 12
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

<b>How human activities and ventilation systems impact indoor air composition and chemistry in buildings</b>

Jinglin Jiang (5930687) 19 July 2024 (has links)
<p dir="ltr">As people in the U.S. spend 90% of their time indoors, their exposure to indoor air pollutants released during the use of household consumer products cannot be overlooked. Studies have shown that consumer products such as disinfectants, cleaning agents, and personal care products (PCPs) contain complex mixtures of volatile organic compounds (VOCs). Monoterpenes, added as active ingredients in cleaning agents and fragrances, are commonly detected in these products. Monoterpenes can react with ozone (O<sub>3</sub>) and initiate the formation of secondary organic aerosol (SOA). Siloxanes, another category of compounds commonly found in PCPs, can bioaccumulate and may adversely impact the environment and human health.</p><p><br></p><p dir="ltr">Most prior studies have evaluated chemical emissions from these products using offline techniques, such as sorbent tube sampling followed by gas chromatography-mass spectrometry (GC-MS). Few studies have been conducted during real-life use of these products in indoor environments. Considering that many indoor activities are often transient, the composition of indoor air can be rapidly altered. Real-time monitoring of indoor VOCs and aerosols is necessary to capture the temporal variations in emissions during indoor activities and to evaluate their impact on indoor air chemistry, human exposure, and outdoor air quality. In addition, O<sub>3 </sub>also plays an important role in indoor chemistry. Indoor O<sub>3 </sub>concentrations are strongly linked to ventilation system operation and occupancy patterns, as the ventilation from outdoors is the major source of indoor O<sub>3</sub> and occupants are a major sink of indoor O<sub>3</sub>. However, studies on how ventilation modes and occupancy impact spatiotemporal distributions of indoor O<sub>3 </sub>are limited.</p><p><br></p><p dir="ltr">Hazardous chemical incidents can potentially be another unexpected source of indoor pollutants, releasing volatile chemicals which can be transported to indoor environments via building ventilation. Evaluation of air, water, and soil contamination and human exposure risks is critical in the emergency response to hazardous chemical incidents, to develop effective remediation strategies. An effective and reliable approach to assess air, water, and soil contamination, and subsequent human exposures, is urgently needed.</p><p dir="ltr">To fill these research gaps, this dissertation aims to: (1.) characterize gas- and particle-phase emissions in real-time during common indoor activities, including surface disinfection, cleaning, and hair styling; (2.) evaluate the impact of indoor emissions on human health and the atmospheric environment; (3.) map the spatiotemporal distribution of O<sub>3</sub> and CO<sub>2</sub> concentrations throughout a building ventilation system; (4.) develop a methodology for rapid screening of VOCs in surface water samples collected from a chemical disaster site.</p><p><br></p><p dir="ltr">To achieve research goals (1.) and (2.), a field campaign was conducted at the Indiana University Research and Teaching Preserve (IURTP) field laboratory in summer 2019 and two field campaigns were conducted at the Purdue zero Energy Design Guidance for Engineers (zEDGE) Tiny House in fall 2020 and summer 2021 to characterize emissions from the use of cleaning agents, disinfectants, and hair care products in indoor environments, respectively. A proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) was used to monitor the mixing ratios of VOCs in real-time. To achieve research goal (3.), a multi-point sampling system was created at the Herrick Living Laboratories and its ventilation system in spring and summer 2019 to monitor spatiotemporal trends in O<sub>3 </sub>concentrations. To achieve goal (4.), a controlled static headspace sampling system, in conjunction with a high-resolution PTR-TOF-MS was developed to analyze surface water samples collected from East Palestine, Ohio, U.S. in the weeks after a train derailment and subsequent chemical spill and burn.</p>
32

Assessing urban air quality through measurements and modelling and its implications for human exposure assessment

Wu, Hao January 2017 (has links)
Outdoor air pollution is a major contributor to adverse health effects of citizens, in particular those living in urban environments. Air quality monitoring networks are set up to measure air quality in different environments in compliance with national and European legislation. Generally, only a few fixed monitoring sites are located within a city and thus cannot represent air pollutant concentrations in urban areas accurately enough to allow for a detailed human exposure assessment. Other approaches to derive detailed urban air pollutant concentration estimates exist, such as dispersion models and land-use regression (LUR) models. Low-cost portable air quality monitors are also emerging, which have the potential to add value to existing monitoring networks by providing measurements at greater spatial resolution and also to provide individual-level exposure assessment. The aim of this thesis is to demonstrate how measurements and modelling in combination allow detailed investigations of the variability of air pollutants in space and time in urban area, and in turn improve on the current exposure assessment methods. Three types of low-cost portable monitors measuring NO2, O3 (Aeroqual monitors) and PM2.5 (microPEM monitor) were evaluated against their respective reference instruments. The Aeroqual O3 monitor showed very good correlation (r2 > 0.9) with the respective reference instruments, but biases in the slope and intercept coefficients indicated that calibration of Aeroqual O3 monitor was needed. The Aeroqual NO2 monitor was subject to cross-sensitivity from O3, which, as demonstrated, can be effectively corrected by making O3 and NO2 measurements in tandem. Correlation between the microPEM monitor and its reference instrument was poor (r2 < 0.1) when PM2.5 concentrations were low (< 10 μg m-3), but significantly improved (r2 > 0.69) during periods with elevated PM2.5 concentrations. Relative humidity was not found to affect the raw results of PM2.5 measurements in a consistent manner. All three types of monitors cannot be used as equivalent or indicative methods instead of reference methods in studies that require quantification of absolute pollutant concentrations. However, the generally good correlations with reference instruments reassure their application in studies of relative trends of air pollution. Concentrations of PM2.5, ultrafine particles (UFP) and black carbon (BC) were quantified using portable monitors through a combination of mobile and static measurements in the city of Edinburgh, UK. The spatial variability of UFP and BC was large, of similar magnitude and about 3 times higher than the spatial variability of PM2.5. Elevated concentrations of UFP and BC were observed along streets with high traffic volumes whereas PM2.5 showed less variation between streets and a footpath without road traffic. Both BC and UFP significantly correlated with traffic counts, while no significant correlation between PM2.5 and traffic counts was observed. The relationships between UFP, NO2 and inorganic components of PM2.5 were further investigated through long-term measurements at roadside, urban background and rural sites. UFP moderately correlated with NOx (NO2 + NO) and showed varying relationships with NOx depending on the particle size distribution. Principal component analysis and air-mass back trajectory analysis revealed that PM2.5 concentrations were dominated by long-range transport of secondary inorganic aerosols, whereas UFP were mainly related to varying local emissions and meteorological conditions. These findings imply the need for different policies for managing human exposure to these different particle components: control of much BC and UFP appears to be manageable at local scale by restricting traffic emissions; however, abatement of PM2.5 requires a more strategic approach, in cooperation with other regions and countries on emissions control to curb long-range transport of PM2.5 precursors. A dispersion model (ADMS-Urban) was used to simulate high resolution NO2 and O3 concentrations in Edinburgh. The effects of different emission and meteorological input datasets on the resulting modelled NO2 concentrations were investigated. The modelled NO2 and O3 concentrations using the optimal model setup were validated against reference instrument and diffusion tube measurements. Temporal variability of NO2 was predicted well at locations that were not heavily influenced by local effects, such as road junctions and bus stops. Temporal variability of O3 was predicted better than for NO2. Long-term spatial variability of NO2 was found to correlate well with diffusion tube measurements, while modelled spatial variability of O3 in ADMS-Urban compared poorly with diffusion tube measurements. However, it was found that the O3 diffusion tube measurements may be subject to some unidentified biases affecting their accuracy. Land-use regression (LUR) models are widely used to estimate exposure to air pollution in urban areas. An appropriately sized and designed monitoring network is an important component for the development of a robust LUR model. Concentrations of NO2 were simulated by ADMS-Urban at ‘virtual’ monitoring sites in 54 different network designs of varying numbers and types of site, using a 25 km2 area including much of the Edinburgh city area. Separate LUR models were developed for each network. These LUR models were then used to estimate ambient NO2 concentrations at all residential addresses, which were evaluated against the ADMS-Urban modelled concentration at these addresses. The improvement in predictive capability of the LUR models was insignificant above ~30 monitoring sites, although more sites tended to yield more precise LUR models. Monitoring networks containing sites located within highly populated areas better estimated NO2 concentrations across all residential locations. LUR models constructed from networks containing more roadside sites better characterised the high end of residential NO2 concentrations but had increased errors when considering the whole range of concentrations. No particular composition of monitoring network resulted in good estimation simultaneously across all residential NO2 concentration and of the highest NO2 levels implying a lack of spatial contrast in LUR-modelled pollution surface compared with the dispersion model. Finally, the results from the measurement and modelling studies presented in thesis are synthesised in the context of current exposure assessment studies. Low-cost air-quality monitors currently do not possess and are unlikely in the near future to provide the robustness and accuracy to replace the existing routine monitoring network. Development of the low-cost air-quality should be aiming at upgrading them as the indicative method as defined in the data quality objective in the EU directive. The monitoring sites used to build LUR models should capture well the population distribution in the study area as opposed to capturing the greatest pollution contrast. The traditional methods of evaluating LUR models are also ineffective in characterising the models’ capability at estimating pollutant concentration at residential address. Given that the dispersion models are also subject to the availability and uncertainties in the input data, future air quality model development should endeavour to incorporate both dispersion and land-use regression models, where the uncertainty in the input data can be reduced by using LUR models built on actual measurements, and the limitation in the statistical modelling can be replaced by adopting the deterministic approach used in the dispersion model.
33

Etude de l'exposition d'une population à un réseau de communication sans fil via les outils de dosimétrie et de statistique / Study of the exposure of a population to a wireless communication network via dosimetric tools and statistic

Huang, Yuanyuan 13 March 2017 (has links)
Cette thèse propose une nouvelle méthode, via les outils de dosimétrie et de statistiques, pour l'évaluation de l'exposition globale d'une population aux champs électromagnétiques (EMFs) radiofréquences en prenant en compte les différentes technologies, usages et environnements... Nous avons analysé pour la première fois l'exposition moyenne d'une population induite par un réseau 3G, tout en considérant à la fois les émissions EMFs montantes et descendantes dans des différents pays, dans des différentes zones géographiques et pour les différents usages des mobiles. Les résultats montrent une forte hétérogénéité de l'exposition dans le temps et dans l'espace. Contrairement à la croyance populaire, l'exposition aux ondes EMFs 3G est dominée par les émissions montantes, résultant de l'usage voix et data. En outre, l'exposition moyenne de la population diffère d'une zone géographique à une autre, ainsi que d'un pays à un autre, en raison des différentes architectures de réseau cellulaire et de la variabilité de l'usage des mobiles. Ensuite, la variabilité et les incertitudes liées à ces facteurs ont été caractérisées. Une analyse de sensibilité basée sur la variance de l'exposition globale a été effectuée dans le but de simplifier son évaluation. Enfin, une méthodologie simplifiée basée sur des outils statistiques avancés a été proposée pour évaluer l'exposition réelle de la population en tenant compte de la variabilité liée à l'environnement de propagation, à l'usage, ainsi qu'aux émissions EMFs provenant des mobiles et des stations de base (BTS). Les résultats ont souligné l'importance de la densité de puissance reçue depuis les BTS pour l'exposition globale induite par un réseau macro LTE. / Wireless communication technologies, since their introduction, have evolved very quickly and people have been brought in 30 years into a much closer world. In parallel radiofrequency (RF) electromagnetic fields (EMF) are more and more used. As a consequence, people's attentions around health risks of exposure to RF EMFs have grown just as much as their usages of wireless communication technologies. Exposure to RF EMFs can be characterized using different exposure metrics (e.g., incident field metrics, absorption metrics...). However, the existing methodologies are well suited to the maximum exposure assessment for the individual under the worst-case condition. Moreover in most cases, when dealing with exposure issues, exposures linked to RF EMF emitted from base stations (BTS) and by wireless devices (e.g, mobile phones and tablets) are generally treated separately. This thesis has been dedicated to construct and validate a new method for assessing the real day-to-day RF EMF exposure to a wireless network as a whole, exploring the people's daily life, including both downlink and uplink exposures and taking into account different technologies, usages, environments, etc. Towards these objectives, we analyzed for the first time the average population exposure linked to third generation network (3G) induced EMFs, from both uplink and downlink radio emissions in different countries, geographical areas, and for different wireless device usages. Results, derived from device usage statistics, show a strong heterogeneity of exposure, both in time and space. We show that, contrary to popular belief, exposure to 3G EMFs is dominated by uplink radio emissions, resulting from voice and data traffic, and average population EMF exposure differs from one geographical area to another, as well as from one country to another, due to the different cellular network architectures and variability of mobile usage. Thus the variability and uncertainties linked to these influencing factors were characterized. And a variance-based sensitivity analysis of the global exposure was performed for the purpose of simplifying its evaluation. Finally, a substitution model was built to evaluate the day-to-day global LTE induced EMFs exposure of a population taking into account the variability linked to propagation environment, usage, as well as EMFs from personal wireless devices and BTS. Results have highlighted the importance of received power density from BTS to the issue of global exposure induced by a macro LTE network. This substitution model can be further used to analyze the evolution of the wireless network in terms of EMF exposure.
34

Evaluation de la contamination des atmosphères intérieures et extérieures induite par les usages non agricoles de pesticides / Evaluation of indoor and outdoor air contamination resulting from non-agricultural uses of pesticides

Raeppel, Caroline 16 November 2012 (has links)
Dans le but d’évaluer la contamination des atmosphères intérieures et extérieures induite par les usages non agricoles de pesticides, deux approches complémentaires ont été mises en oeuvre : l’utilisation de capteurs passifs de type Tenax TA pour réaliser des prélèvements d’air, et l’utilisation de cheveux employés comme biomarqueurs d’exposition. Des campagnes de mesures ont été menées sur plusieurs sites à la suite de traitements de désherbage ou de désinsectisation ainsi quedans des logements. Les échantillons d’air et de cheveux ont été extraits respectivement par thermodésorption et par extraction solide-liquide, avant d’être analysés en chromatographie gazeuse couplée à la spectrométrie de masse (GC-MS). Une augmentation du niveau de contamination de l’air extérieur et intérieur et l’existence de transferts entre ces deux milieux ont pu être observées après l’application de pesticides. Dans les logements, des pesticides actuellement employés mais aussi des pesticides interdits et persistants ont été détectés. Plusieurs pesticides ont également été détectés dans les cheveux, mais l’exposition humaine à ces derniers n’a pas pu toujours être corrélée à une contamination de l’air. / In order to evaluate indoor and outdoor air contamination resulting from non-agricultural uses of pesticides, two complementary approaches were applied: passive samplers based on Tenax TA used for air sampling and hair used as biomarkers of exposure. Sampling campaigns were conducted on several sites after weeding and pest control treatments as well as in accommodations. Air samples and hair samples were respectively extracted by thermal desorption and solid-liquid extraction prior to their analysis by gas chromatography combined with mass spectrometry (GC-MS). An increase of the indoor and outdoor air contamination levels and the existence of transfers between these two environments could be observed after pesticides applications. In accommodations, pesticides currently used and banned but persistent ones were detected. Several pesticides were also detected in hair samples but human exposure to these pesticides cannot be correlated with air contamination in all cases.
35

Analysis of Worldwide Pesticide Regulatory Models and Standards for Controlling Human Health Risk

Li, Zijian 13 September 2016 (has links)
No description available.
36

Évaluation des niveaux d’éthanolémie résultant de l’exposition à l’éthanol par inhalation : études chez des volontaires et modélisation toxicocinétique

Dumas-Campagna, Josée 07 1900 (has links)
Un modèle pharmacocinétique à base physiologique (PBPK) d’exposition par inhalation à l’éthanol a antérieurement été développé en se basant sur des données provenant d’une étude chez des volontaires exposés par inhalation à plus de 5000 ppm. Cependant, une incertitude persiste sur la capacité du modèle PBPK à prédire les niveaux d’éthanolémie pour des expositions à de faibles concentrations. Ces niveaux sont fréquemment rencontrés par une large partie de la population et des travailleurs suite à l’utilisation de produits tels que les vernis et les solutions hydroalcooliques (SHA). Il est ainsi nécessaire de vérifier la validité du modèle existant et de déterminer l’exposition interne à l’éthanol dans de telles conditions. Les objectifs du mémoire sont donc 1) de documenter les niveaux d’éthanolémie résultant de l’exposition par inhalation à de faibles concentrations d’éthanol (i.e., ≤ 1000 ppm) et de valider/raffiner le modèle PBPK existant pour ces concentrations ; et 2) de déterminer les concentrations d’éthanol atmosphérique provenant d’utilisation de SHA et de vernis et de prédire les niveaux d’éthanolémie découlant de leur utilisation. Les données toxicocinétiques récoltées chez des volontaires nous suggèrent qu’il est insuffisant de limiter au foie la clairance métabolique de l’éthanol lors d’exposition à de faibles niveaux d’éthanol, contrairement aux expositions à de plus forts niveaux. De plus, il a clairement été démontré qu’un effort physique léger (50 W) influençait à la hausse (2-3 fois) l’éthanolémie des volontaires exposés à 750 ppm. L’ajout au modèle PBPK d’une clairance métabolique de haute affinité et de faible capacité associée aux tissus richement perfusés a permis de simuler plus adéquatement la cinétique de l’éthanolémie pour des expositions à des concentrations inférieures à 1000 ppm. Des mesures de concentrations d’éthanol dans l’air inhalé générées lors d’utilisation de SHA et de vernis ont permis de simuler des expositions lors de l’utilisation de ces produits. Pour l’utilisation de 1,5 g et 3 g de SHA dans un local peu ventilé, des concentrations sanguines maximales (Cmax) de 0.383 et 0.366 mg.L-1 ont été respectivement simulées. Dans un local bien ventilé, les Cmax simulées étaient de 0.264 et 0.414 mg.L-1. Selon les simulations, une application de vernis résulterait en une Cmax respectivement de 0.719 mg.L-1 et de 0.729 mg.L-1, chez les hommes et femmes. Les Cmax sanguines d’éthanol estimées suites aux différentes simulations sont inférieures à la concentration toxique pour les humains (100 mg.L-1). Ainsi, de telles expositions ne semblent pas être un danger pour la santé. Les résultats de cette étude ont permis de mieux décrire et comprendre les processus d’élimination de l’éthanol à faibles doses et permettront de raffiner l’évaluation du risque associé à l’inhalation chronique de faibles niveaux d’éthanol pour la population, particulièrement chez les travailleurs. / A physiologically based pharmacokinetic model (PBPK) on inhalation exposure to ethanol has previously been developed based on data from an inhalation study in volunteers exposed to more than 5000 ppm. However, there remains uncertainty about the ability of the PBPK model to predict the blood levels of ethanol (BLE) for exposure to low concentrations. These levels are frequently encountered by a large part of the population and workers by using products such as varnishes and alcoholic solutions (HAS). It is therefore necessary to verify the validity of the existing model and determine the internal exposure to ethanol in such conditions. The objectives of this master’s thesis are 1) to document the BLE resulting from inhalation exposure to low concentrations of ethanol (i.e., ≤ 1000 ppm) and validate/refine the existing PBPK model for these concentrations, and 2) to determine the atmospheric concentrations of ethanol following the use of alcoholic solutions (HAS) and varnish as well as to predict the BLE resulting from their use. Toxicokinetic data collected from volunteers suggest that it is insufficient to limit metabolic clearance of ethanol to the liver during exposures to low levels of ethanol, unlike exposures to stronger levels. In addition, it was clearly demonstrated that light exercise (50W) increased (2-3 fold) the BLE in volunteers exposed to 750 ppm. An addition to the PBPK model of a metabolic clearance of high affinity and low capacity associated with richly perfused tissue was performed to simulate more accurately the toxicokinetic data from low and high ethanol exposure levels. Measurements of ethanol concentrations in inhaled air generated during the use of HAS and varnishes were used to simulate the exposure during the use of these products. The simulation for HAS, for 1.5 g and 3 g, gave a maximum blood concentration (Cmax) of 0.383 and 0.366 mg.L-1 respectively in a poorly ventilated room. In a well-ventilated room, the simulated Cmax for 1.5 g and 3 g of HAS were 0.264 and 0.414 mg.L-1, respectively. The simulation results from the use of ethanol-based varnish yielded a Cmax for men and women of 0.719 and 0.729 mg.L-1 respectively. The blood Cmax of ethanol previously listed for the various simulations are well below the toxic dose for humans (50 mg.L-1). Thus, such exposures do not seem to be a health hazard. The results of this study helped to better describe and understand the elimination of ethanol at low doses and refine the evaluation process associated with chronic inhalation of low levels of ethanol to the population risk, particularly in workers.
37

Évaluation des niveaux d’éthanolémie résultant de l’exposition à l’éthanol par inhalation : études chez des volontaires et modélisation toxicocinétique

Dumas-Campagna, Josée 07 1900 (has links)
Un modèle pharmacocinétique à base physiologique (PBPK) d’exposition par inhalation à l’éthanol a antérieurement été développé en se basant sur des données provenant d’une étude chez des volontaires exposés par inhalation à plus de 5000 ppm. Cependant, une incertitude persiste sur la capacité du modèle PBPK à prédire les niveaux d’éthanolémie pour des expositions à de faibles concentrations. Ces niveaux sont fréquemment rencontrés par une large partie de la population et des travailleurs suite à l’utilisation de produits tels que les vernis et les solutions hydroalcooliques (SHA). Il est ainsi nécessaire de vérifier la validité du modèle existant et de déterminer l’exposition interne à l’éthanol dans de telles conditions. Les objectifs du mémoire sont donc 1) de documenter les niveaux d’éthanolémie résultant de l’exposition par inhalation à de faibles concentrations d’éthanol (i.e., ≤ 1000 ppm) et de valider/raffiner le modèle PBPK existant pour ces concentrations ; et 2) de déterminer les concentrations d’éthanol atmosphérique provenant d’utilisation de SHA et de vernis et de prédire les niveaux d’éthanolémie découlant de leur utilisation. Les données toxicocinétiques récoltées chez des volontaires nous suggèrent qu’il est insuffisant de limiter au foie la clairance métabolique de l’éthanol lors d’exposition à de faibles niveaux d’éthanol, contrairement aux expositions à de plus forts niveaux. De plus, il a clairement été démontré qu’un effort physique léger (50 W) influençait à la hausse (2-3 fois) l’éthanolémie des volontaires exposés à 750 ppm. L’ajout au modèle PBPK d’une clairance métabolique de haute affinité et de faible capacité associée aux tissus richement perfusés a permis de simuler plus adéquatement la cinétique de l’éthanolémie pour des expositions à des concentrations inférieures à 1000 ppm. Des mesures de concentrations d’éthanol dans l’air inhalé générées lors d’utilisation de SHA et de vernis ont permis de simuler des expositions lors de l’utilisation de ces produits. Pour l’utilisation de 1,5 g et 3 g de SHA dans un local peu ventilé, des concentrations sanguines maximales (Cmax) de 0.383 et 0.366 mg.L-1 ont été respectivement simulées. Dans un local bien ventilé, les Cmax simulées étaient de 0.264 et 0.414 mg.L-1. Selon les simulations, une application de vernis résulterait en une Cmax respectivement de 0.719 mg.L-1 et de 0.729 mg.L-1, chez les hommes et femmes. Les Cmax sanguines d’éthanol estimées suites aux différentes simulations sont inférieures à la concentration toxique pour les humains (100 mg.L-1). Ainsi, de telles expositions ne semblent pas être un danger pour la santé. Les résultats de cette étude ont permis de mieux décrire et comprendre les processus d’élimination de l’éthanol à faibles doses et permettront de raffiner l’évaluation du risque associé à l’inhalation chronique de faibles niveaux d’éthanol pour la population, particulièrement chez les travailleurs. / A physiologically based pharmacokinetic model (PBPK) on inhalation exposure to ethanol has previously been developed based on data from an inhalation study in volunteers exposed to more than 5000 ppm. However, there remains uncertainty about the ability of the PBPK model to predict the blood levels of ethanol (BLE) for exposure to low concentrations. These levels are frequently encountered by a large part of the population and workers by using products such as varnishes and alcoholic solutions (HAS). It is therefore necessary to verify the validity of the existing model and determine the internal exposure to ethanol in such conditions. The objectives of this master’s thesis are 1) to document the BLE resulting from inhalation exposure to low concentrations of ethanol (i.e., ≤ 1000 ppm) and validate/refine the existing PBPK model for these concentrations, and 2) to determine the atmospheric concentrations of ethanol following the use of alcoholic solutions (HAS) and varnish as well as to predict the BLE resulting from their use. Toxicokinetic data collected from volunteers suggest that it is insufficient to limit metabolic clearance of ethanol to the liver during exposures to low levels of ethanol, unlike exposures to stronger levels. In addition, it was clearly demonstrated that light exercise (50W) increased (2-3 fold) the BLE in volunteers exposed to 750 ppm. An addition to the PBPK model of a metabolic clearance of high affinity and low capacity associated with richly perfused tissue was performed to simulate more accurately the toxicokinetic data from low and high ethanol exposure levels. Measurements of ethanol concentrations in inhaled air generated during the use of HAS and varnishes were used to simulate the exposure during the use of these products. The simulation for HAS, for 1.5 g and 3 g, gave a maximum blood concentration (Cmax) of 0.383 and 0.366 mg.L-1 respectively in a poorly ventilated room. In a well-ventilated room, the simulated Cmax for 1.5 g and 3 g of HAS were 0.264 and 0.414 mg.L-1, respectively. The simulation results from the use of ethanol-based varnish yielded a Cmax for men and women of 0.719 and 0.729 mg.L-1 respectively. The blood Cmax of ethanol previously listed for the various simulations are well below the toxic dose for humans (50 mg.L-1). Thus, such exposures do not seem to be a health hazard. The results of this study helped to better describe and understand the elimination of ethanol at low doses and refine the evaluation process associated with chronic inhalation of low levels of ethanol to the population risk, particularly in workers.

Page generated in 0.099 seconds