• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing and awareness of masked stimuli

Price, Mark C. January 1990 (has links)
No description available.
2

Processing of natural images by the human visual system

Tadmor, Yoav January 1991 (has links)
No description available.
3

The role of onsets in tachistoscopic recognition

Judge, A. J. January 1985 (has links)
No description available.
4

The place of animals in British moral discourse : a field study from the Scottish Borders

Fukuda, Kaoru January 1996 (has links)
No description available.
5

Intuitive number-averaging : error and subject strategy related to informational, perceptual and statistical aspects of the task

Sever, G. A. January 1977 (has links)
No description available.
6

A comparison of psi and subliminal perception

Roney-Dougal, S. M. January 1987 (has links)
This programme of research is concerned with a direct comparison between the ways in which we respond to, and become aware of, subliminal and psi stimuli. I define subliminal percepts as those produced by sensory stimulation below the awareness threshold; psi "percepts", i.e. telepathy, clairvoyance and precognition, are those occurring in the absence of any physical stimulus. Initially a preliminary investigation was run to choose suitable target stimuli and to ascertain the correct subliminal volume. Then an exploratory study was run in which 10 participants undertook six Ganzfeld sessions each. The Ganzfeld technique induces the hypnagogic state and is a successful and well-researched design in parapsychology. Besides measuring levels of awareness to the stimuli, affective, physiological and personality factors were assessed. In the follow-up study, the basic design and targets were refined, and more extensive psychological tests were included; a semantic differential test, a state of consciousness report, and cognitive flexibility tests. The final study was run in order to assess whether the basic findings would generalise to a wider segment of the population. Results from the exploratory and follow-up studies indicate that, at the cognitive level of response, the psychological process of achieving awareness of the target is very similar for both phenomena. The final study indicated that awareness of subliminal stimuli is possibly relatively greater under certain circumstances. All three studies indicated that both phenomena are affected by factors such as attitude and personality in a similar manner.
7

Your environment and you: investigating stress triggers and characteristics of the built environment

Ruskamp, Parker January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / Brent Chamberlain / The physical environment influences mental health and inevitably well-being. While exposure to natural environments shows salubrious health benefits among those who maintain a consistent connection, little is known about how urban environments impact mental health. As urbanization increases worldwide, it is essential to understand the linkages between urbanized environments and public health. This project is guided by the research question: How do different environmental characteristics affect stress-related responses in users? The study will guide individual subjects (n > 30) to walk a designated route, exposing them to different architectural and environmental elements in downtown Manhattan, Kansas. Physiological biofeedback sensors, including electrodermal activity (EDA) and heart rate sensors, will be used monitor physiological behavioral changes; GPS will provide spatial location; and a GoPro camera will provide real-time first-person experience. Data from these sensors will be integrated into a temporal-spatial analysis to ascertain correlations between architectural and environmental elements in space and associated stress responses. Upon completing the walk, participants will take a brief survey asking for their perceptions, both quantitatively and qualitatively, of the different environments they encounter on the walk. Raw data collected from the biofeedback devices will be refined and analyzed spatially using GIS mapping software. This will allow us to visualize any associations between design characteristics and the elicited behavioral responses in order to determine the environmental characteristics that may illicit heightened stress responses. Analysis of the survey data will seek to identify any correlations between physiological and perception-based responses. The intent of the research is to provide a foundation for further studies into how public policy can be better informed and augmented to mitigate potential public health issues caused by urban design. Results will also inform architectural and engineering decision-making processes to further improve urban design by identifying characteristics that may improve or decrease mental health of those living and/or frequenting urban environments.
8

Human perception of vibrations due to synchronised crowd loading in grandstands

Browning, Gillian January 2011 (has links)
Since the identification, in the UK, of the need for further information on the dynamic loading of grandstands in the early 1990s, a number of research projects have investigated the issues relating to dynamic loading of structures due to groups of people participating in synchronised activities. These studies have, to date, largely focused on producing load models to accurately represent the dynamic crowd load and the human-structure interaction. However, whilst the vibrational response of grandstand structures is becoming better understood, the question arises as to what level of dynamic response is acceptable to the users. Currently there is very little experimental data available regarding human perception of vibrations in such crowd loading situations. As a result those producing design standards and design guides have very little information on which to base serviceability requirements. To address this, tests have been carried out at the University of Bath using a section of grandstand, whose dynamic properties could be varied, with the aim of developing acceptability criteria. Groups of participants were subjected to a range of vibrations induced by selected members of the group jumping in synchrony. Both those seated and jumping during the tests were asked to rate their perception and emotion of each vibration as well as the acceptability of the vibration in a real grandstand situation. These ratings were then used to statistically model perception and emotion to find the key vibration characteristics influencing the human response of both the seated and jumping participants prior to developing acceptability curves for each group. It was found that those seated are more sensitive to vibrations than those jumping to create them. The response of the jumpers is relatively simple and can be fairly accurately modelled using just a single variable namely the square of vertical RMS displacement. The seated response is much more complex but can be relatively accurately represented using logarithm of vertical RMS acceleration. The proposed acceptability criteria and load model generally tie in well with previously published guidelines provided that the serviceability criteria are in the same format as the original research upon which they were based (i.e. peak accelerations).
9

The Impact of Graph Layouts on the Perception of Graph Properties

January 2019 (has links)
abstract: Graphs are commonly used visualization tools in a variety of fields. Algorithms have been proposed that claim to improve the readability of graphs by reducing edge crossings, adjusting edge length, or some other means. However, little research has been done to determine which of these algorithms best suit human perception for particular graph properties. This thesis explores four different graph properties: average local clustering coefficient (ALCC), global clustering coefficient (GCC), number of triangles (NT), and diameter. For each of these properties, three different graph layouts are applied to represent three different approaches to graph visualization: multidimensional scaling (MDS), force directed (FD), and tsNET. In a series of studies conducted through the crowdsourcing platform Amazon Mechanical Turk, participants are tasked with discriminating between two graphs in order to determine their just noticeable differences (JNDs) for the four graph properties and three layout algorithm pairs. These results are analyzed using previously established methods presented by Rensink et al. and Kay and Heer.The average JNDs are analyzed using a linear model that determines whether the property-layout pair seems to follow Weber's Law, and the individual JNDs are run through a log-linear model to determine whether it is possible to model the individual variance of the participant's JNDs. The models are evaluated using the R2 score to determine if they adequately explain the data and compared using the Mann-Whitney pairwise U-test to determine whether the layout has a significant effect on the perception of the graph property. These tests indicate that the data collected in the studies can not always be modelled well with either the linear model or log-linear model, which suggests that some properties may not follow Weber's Law. Additionally, the layout algorithm is not found to have a significant impact on the perception of some of these properties. / Dissertation/Thesis / Masters Thesis Computer Science 2019
10

Um modelo de avaliacão da percepção de tridimensionalidade para sistemas de realidade virtual estereoscópicos / An evaluation model of three-dimensionality perception for virtual reality stereoscopic systems

Silva, Sahra Karolina Gomes e 14 December 2016 (has links)
Ambientes virtuais tridimensionais imersivos são frequentemente utilizados como apoio às estratégias de treinamento ou educação conduzidas em ambientes reais. Técnicas estereoscópicas como as de anaglifos, obturação e polarização da luz são recursos que oferecem a sensação de imersão nesses ambientes virtuais. É crescente o interesse em pesquisas acerca de como os humanos percebem o espaço e interagem em ambientes virtuais, investigando como componentes de sistemas imersivos afetam a percepção humana. Essa percepção é importante para várias tarefas, como mover objetos e identificar estruturas, que requerem a interpretação e entendimento das informações do espaço. Apesar de tal interesse, não são encontrados na literatura modelos de mensuração de tal percepção. Este cenário constitui um desafio no que concerne à necessidade de criação de modelos para mensurar, independentemente da aplicação, a percepção da tridimensionalidade proporcionada pelas técnicas estereoscópicas citadas. Este projeto de mestrado define, implementa e valida um modelo extensível capaz de avaliar a percepção da tridimensionalidade em sistemas de realidade virtual estereoscópicos no contexto de ambientes que envolvem interação com manipulação de objetos. O escopo da presente pesquisa foi definido mediante a realização de uma Revisão Sistemática, que identificou métodos e parâmetros utilizados na avaliação de ambientes estereoscópicos. Para atingir os objetivos deste trabalho, foram conduzidos experimentos que serviram de base para a definição do modelo. Os resultados dos experimentos indicaram que o modelo elaborado é capaz de compor um veredicto sobre a percepção de tridimensionalidade fornecida por uma técnica, assim como auxiliar na tomada de decisões acerca da utilização de técnicas estereoscópicas em sistemas de RV / Three-Dimensional immersive virtual environments are often used as support for training strategies or education conducted in real environments. Stereoscopic techniques such as anaglyph, shutter glasses and polarized glasses can offer a sense of immersion in these virtual environments. There is a growing interest in research how humans perceive space and interact in virtual environments, investigating how components of immersive systems affect different understanding of space in virtual reality systems. This perception is important for various tasks, such as moving objects and identify structures that require interpretation and understanding of space information. This scenario is a challenge regarding the establishment of models to measure, independently of the application, the perception of three-dimensionality provided by the stereoscopic techniques cited. This master project defines and validates an extensible model able to evaluate the three-dimensionality perception in different virtual reality systems with stereoscopy that involves objects manipulation. The scope of this study was defined with a systematic review that identified methods and parameters used to assess stereoscopic environments. To achieve the objectives of this study, experiments was conducted as the basis to define the model. The results of the experiments indicated that the model developed is able to set a verdict about three-dimensionality perception provided by a stereoscopic technique and assist decision-making regarding the use of stereoscopic techniques in VR systems

Page generated in 0.1644 seconds