• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE IMPACT OF MENTAL TRANSFORMATION TRAINING ACROSS LEVELS OF AUTOMATION ON SPATIAL AWARENESS IN HUMAN-ROBOT INTERACTION

Rehfeld, Sherri 11 January 2007 (has links)
One of the problems affecting robot operators' spatial awareness involves their ability to infer a robot's location based on the views from on-board cameras and other electro-optic systems. To understand the vehicle's location, operators typically need to translate images from a vehicle's camera into some other coordinates, such as a location on a map. This translation requires operators to relate the view by mentally rotating it along a number of axes, a task that is both attention-demanding and workload-intensive, and one that is likely affected by individual differences in operator spatial abilities. Because building and maintaining spatial awareness is attention-demanding and workload-intensive, any variable that changes operator workload and attention should be investigated for its effects on operator spatial awareness. One of these variables is the use of automation (i.e., assigning functions to the robot). According to Malleable Attentional Resource Theory (MART), variation in workload across levels of automation affects an operator's attentional capacity to process critical cues like those that enable an operator to understand the robot's past, current, and future location. The study reported here focused on performance aspects of human-robot interaction involving ground robots (i.e., unmanned ground vehicles, or UGVs) during reconnaissance tasks. In particular, this study examined how differences in operator spatial ability and in operator workload and attention interacted to affect spatial awareness during human-robot interaction (HRI). Operator spatial abilities were systematically manipulated through the use of mental transformation training. Additionally, operator workload and attention were manipulated via the use of three different levels of automation (i.e., manual control, decision support, and full automation). Operator spatial awareness was measured by the size of errors made by the operators, when they were tasked to infer the robot's location from on-board camera views at three different points in a sequence of robot movements through a simulated military operation in urban terrain (MOUT) environment. The results showed that mental transformation training increased two areas of spatial ability, namely mental rotation and spatial visualization. Further, spatial ability in these two areas predicted performance in vehicle localization during the reconnaissance task. Finally, assistive automation showed a benefit with respect to operator workload, situation awareness, and subsequently performance. Together, the results of the study have implications with respect to the design of robots, function allocation between robots and operators, and training for spatial ability. Future research should investigate the interactive effects on operator spatial awareness of spatial ability, spatial ability training, and other variables affecting operator workload and attention. / Ph.D. / Department of Psychology / Sciences / Psychology
2

Aplicação de um robô humanoide autônomo por meio de reconhecimento de imagem e voz em sessões pedagógicas interativas / Application of an autonomous humanoid robot by image and voice recognition in interactive pedagogical sessions

Daniel Carnieto Tozadore 03 March 2016 (has links)
A Robótica Educacional consiste na utilização de robôs para aplicação prática dos conteúdos teóricos discutidos em sala de aula. Porém, os robôs mais usados apresentam uma carência de interação com os usuários, a qual pode ser melhorada com a inserção de robôs humanoides. Esta dissertação tem como objetivo a combinação de técnicas de visão computacional, robótica social e reconhecimento e síntese de fala para a construção de um sistema interativo que auxilie em sessões pedagógicas por meio de um robô humanoide. Diferentes conteúdos podem ser abordados pelos robôs de forma autônoma. Sua aplicação visa o uso do sistema como ferramenta de auxílio no ensino de matemática para crianças. Para uma primeira abordagem, o sistema foi treinado para interagir com crianças e reconhecer figuras geométricas 3D. O esquema proposto é baseado em módulos, no qual cada módulo é responsável por uma função específica e contém um grupo de funcionalidades. No total são 4 módulos: Módulo Central, Módulo de Diálogo, Módulo de Visão e Módulo Motor. O robô escolhido é o humanoide NAO. Para visão computacional, foram comparados a rede LEGION e o sistema VOCUS2 para detecção de objetos e SVM e MLP para classificação de imagens. O reconhecedor de fala Google Speech Recognition e o sintetizador de voz do NAOqi API são empregados para interações sonoras. Também foi conduzido um estudo de interação, por meio da técnica de Mágico-de-Oz, para analisar o comportamento das crianças e adequar os métodos para melhores resultados da aplicação. Testes do sistema completo mostraram que pequenas calibrações são suficientes para uma sessão de interação com poucos erros. Os resultados mostraram que crianças que tiveram contato com uma maior interatividade com o robô se sentiram mais engajadas e confortáveis nas interações, tanto nos experimentos quanto no estudo em casa para as próximas sessões, comparadas às crianças que tiveram contato com menor nível de interatividade. Intercalar comportamentos desafiadores e comportamentos incentivadores do robô trouxeram melhores resultados na interação com as crianças do que um comportamento constante. / Educational Robotics is a growing area that uses robots to apply theoretical concepts discussed in class. However, robots usually present a lack of interaction with users that can be improved with humanoid robots. This dissertation presents a project that combines computer vision techniques, social robotics and speech synthesis and recognition to build an interactive system which leads educational sessions through a humanoid robot. This system can be trained with different content to be addressed autonomously to users by a robot. Its application covers the use of the system as a tool in the mathematics teaching for children. For a first approach, the system has been trained to interact with children and recognize 3D geometric figures. The proposed scheme is based on modules, wherein each module is responsible for a specific function and includes a group of features for this purpose. In total there are 4 modules: Central Module, Dialog Module, Vision Module and Motor Module. The chosen robot was the humanoid NAO. For the Vision Module, LEGION network and VOCUS2 system were compared for object detection and SVM and MLP for image classification. The Google Speech Recognition speech recognizer and Voice Synthesizer Naoqi API are used for sound interactions. An interaction study was conducted by Wizard-of-Oz technique to analyze the behavior of children and adapt the methods for better application results. Full system testing showed that small calibrations are sufficient for an interactive session with few errors. Children who had experienced greater interaction degrees from the robot felt more engaged and comfortable during interactions, both in the experiments and studying at home for the next sessions, compared to children who had contact with a lower level of interactivity. Interim challenging behaviors and support behaviors brought better results in interaction than a constant behavior.
3

Aplicação de um robô humanoide autônomo por meio de reconhecimento de imagem e voz em sessões pedagógicas interativas / Application of an autonomous humanoid robot by image and voice recognition in interactive pedagogical sessions

Tozadore, Daniel Carnieto 03 March 2016 (has links)
A Robótica Educacional consiste na utilização de robôs para aplicação prática dos conteúdos teóricos discutidos em sala de aula. Porém, os robôs mais usados apresentam uma carência de interação com os usuários, a qual pode ser melhorada com a inserção de robôs humanoides. Esta dissertação tem como objetivo a combinação de técnicas de visão computacional, robótica social e reconhecimento e síntese de fala para a construção de um sistema interativo que auxilie em sessões pedagógicas por meio de um robô humanoide. Diferentes conteúdos podem ser abordados pelos robôs de forma autônoma. Sua aplicação visa o uso do sistema como ferramenta de auxílio no ensino de matemática para crianças. Para uma primeira abordagem, o sistema foi treinado para interagir com crianças e reconhecer figuras geométricas 3D. O esquema proposto é baseado em módulos, no qual cada módulo é responsável por uma função específica e contém um grupo de funcionalidades. No total são 4 módulos: Módulo Central, Módulo de Diálogo, Módulo de Visão e Módulo Motor. O robô escolhido é o humanoide NAO. Para visão computacional, foram comparados a rede LEGION e o sistema VOCUS2 para detecção de objetos e SVM e MLP para classificação de imagens. O reconhecedor de fala Google Speech Recognition e o sintetizador de voz do NAOqi API são empregados para interações sonoras. Também foi conduzido um estudo de interação, por meio da técnica de Mágico-de-Oz, para analisar o comportamento das crianças e adequar os métodos para melhores resultados da aplicação. Testes do sistema completo mostraram que pequenas calibrações são suficientes para uma sessão de interação com poucos erros. Os resultados mostraram que crianças que tiveram contato com uma maior interatividade com o robô se sentiram mais engajadas e confortáveis nas interações, tanto nos experimentos quanto no estudo em casa para as próximas sessões, comparadas às crianças que tiveram contato com menor nível de interatividade. Intercalar comportamentos desafiadores e comportamentos incentivadores do robô trouxeram melhores resultados na interação com as crianças do que um comportamento constante. / Educational Robotics is a growing area that uses robots to apply theoretical concepts discussed in class. However, robots usually present a lack of interaction with users that can be improved with humanoid robots. This dissertation presents a project that combines computer vision techniques, social robotics and speech synthesis and recognition to build an interactive system which leads educational sessions through a humanoid robot. This system can be trained with different content to be addressed autonomously to users by a robot. Its application covers the use of the system as a tool in the mathematics teaching for children. For a first approach, the system has been trained to interact with children and recognize 3D geometric figures. The proposed scheme is based on modules, wherein each module is responsible for a specific function and includes a group of features for this purpose. In total there are 4 modules: Central Module, Dialog Module, Vision Module and Motor Module. The chosen robot was the humanoid NAO. For the Vision Module, LEGION network and VOCUS2 system were compared for object detection and SVM and MLP for image classification. The Google Speech Recognition speech recognizer and Voice Synthesizer Naoqi API are used for sound interactions. An interaction study was conducted by Wizard-of-Oz technique to analyze the behavior of children and adapt the methods for better application results. Full system testing showed that small calibrations are sufficient for an interactive session with few errors. Children who had experienced greater interaction degrees from the robot felt more engaged and comfortable during interactions, both in the experiments and studying at home for the next sessions, compared to children who had contact with a lower level of interactivity. Interim challenging behaviors and support behaviors brought better results in interaction than a constant behavior.
4

An Evaluation of Gaze and EEG-Based Control of a Mobile Robot

Khan, Mubasher Hassan, Laique, Tayyab January 2011 (has links)
Context: Patients with diseases such as locked in syndrome or motor neuron are paralyzed and they need special care. To reduce the cost of their care, systems need to be designed where human involvement is minimal and affected people can perform their daily life activities independently. To assess the feasibility and robustness of combinations of input modalities, mobile robot (Spinosaurus) navigation is controlled by a combination of Eye gaze tracking and other input modalities. Objectives: Our aim is to control the robot using EEG brain signals and eye gaze tracking simultaneously. Different combinations of input modalities are used to control the robot and turret movement and then we find out which combination of control technique mapped to control command is most effective. Methods: The method includes developing the interface and control software. An experiment involving 15 participants was conducted to evaluate control of the mobile robot using a combination of eye tracker and other input modalities. Subjects were required to drive the mobile robot from a starting point to a goal along a pre-defined path. At the end of experiment, a sense of presence questionnaire was distributed among the participants to take their feedback. A qualitative pilot study was performed to find out how a low cost commercial EEG headset, the Emotiv EPOCTM, can be used for motion control of a mobile robot at the end. Results: Our study results showed that the Mouse/Keyboard combination was the most effective for controlling the robot motion and turret mounted camera respectively. In experimental evaluation, the Keyboard/Eye Tracker combination improved the performance by 9%. 86% of participants found that turret mounted camera was useful and provided great assistance in robot navigation. Our qualitative pilot study of the Emotiv EPOCTM demonstrated different ways to train the headset for different actions. Conclusions: In this study, we concluded that different combinations of control techniques could be used to control the devices e.g. a mobile robot or a powered wheelchair. Gaze-based control was found to be comparable with the use of a mouse and keyboard; EEG-based control was found to need a lot of training time and was difficult to train. Our pilot study suggested that using facial expressions to train the Emotiv EPOCTM was an efficient and effective way to train it.
5

The impact of social expectation towards robots on human-robot interactions

Syrdal, Dag Sverre January 2018 (has links)
This work is presented in defence of the thesis that it is possible to measure the social expectations and perceptions that humans have of robots in an explicit and succinct manner, and these measures are related to how humans interact with, and evaluate, these robots. There are many ways of understanding how humans may respond to, or reason about, robots as social actors, but the approach that was adopted within this body of work was one which focused on interaction-specific expectations, rather than expectations regarding the true nature of the robot. These expectations were investigated using a questionnaire-based tool, the University of Hertfordshire Social Roles Questionnaire, which was developed as part of the work presented in this thesis and tested on a sample of 400 visitors to an exhibition in the Science Gallery in Dublin. This study suggested that responses to this questionnaire loaded on two main dimensions, one which related to the degree of social equality the participants expected the interactions with the robots to have, and the other was related to the degree of control they expected to exert upon the robots within the interaction. A single item, related to pet-like interactions, loaded on both and was considered a separate, third dimension. This questionnaire was deployed as part of a proxemics study, which found that the degree to which participants accepted particular proxemics behaviours was correlated with initial social expectations of the robot. If participants expected the robot to be more of a social equal, then the participants preferred the robot to approach from the front, while participants who viewed the robot more as a tool preferred it to approach from a less obtrusive angle. The questionnaire was also deployed in two long-term studies. In the first study, which involved one interaction a week over a period of two months, participant social expectations of the robots prior to the beginning of the study, not only impacted how participants evaluated open-ended interactions with the robots throughout the two-month period, but also how they collaborated with the robots in task-oriented interactions as well. In the second study, participants interacted with the robots twice a week over a period of 6 weeks. This study replicated the findings of the previous study, in that initial expectations impacted evaluations of interactions throughout the long-term study. In addition, this study used the questionnaire to measure post-interaction perceptions of the robots in terms of social expectations. The results from these suggest that while initial social expectations of robots impact how participants evaluate the robots in terms of interactional outcomes, social perceptions of robots are more closely related to the social/affective experience of the interaction.
6

Robots that say 'no' : acquisition of linguistic behaviour in interaction games with humans

Förster, Frank January 2013 (has links)
Negation is a part of language that humans engage in pretty much from the onset of speech. Negation appears at first glance to be harder to grasp than object or action labels, yet this thesis explores how this family of ‘concepts’ could be acquired in a meaningful way by a humanoid robot based solely on the unconstrained dialogue with a human conversation partner. The earliest forms of negation appear to be linked to the affective or motivational state of the speaker. Therefore we developed a behavioural architecture which contains a motivational system. This motivational system feeds its state simultaneously to other subsystems for the purpose of symbol-grounding but also leads to the expression of the robot’s motivational state via a facial display of emotions and motivationally congruent body behaviours. In order to achieve the grounding of negative words we will examine two different mechanisms which provide an alternative to the established grounding via ostension with or without joint attention. Two large experiments were conducted to test these two mechanisms. One of these mechanisms is so called negative intent interpretation, the other one is a combination of physical and linguistic prohibition. Both mechanisms have been described in the literature on early child language development but have never been used in human-robot-interaction for the purpose of symbol grounding. As we will show, both mechanisms may operate simultaneously and we can exclude none of them as potential ontogenetic origin of negation.
7

TOWARD BUILDING A SOCIAL ROBOT WITH AN EMOTION-BASED INTERNAL CONTROL

Marpaung, Andreas 31 January 2009 (has links)
In this thesis, we aim at modeling some aspects of the functional role of emotions on an autonomous embodied agent. We begin by describing our robotic prototype, Cherry--a robot with the task of being a tour guide and an office assistant for the Computer Science Department at the University of Central Florida. Cherry did not have a formal emotion representation of internal states, but did have the ability to express emotions through her multimodal interface. The thesis presents the results of a survey we performed via our social informatics approach where we found that: (1) the idea of having emotions in a robot was warmly accepted by Cherry's users, and (2) the intended users were pleased with our initial interface design and functionalities. Guided by these results, we transferred our previous code to a human-height and more robust robot--Petra, the PeopleBot™--where we began to build a formal emotion mechanism and representation for internal states to correspond to the external expressions of Cherry's interface. We describe our overall three-layered architecture, and propose the design of the sensory motor level (the first layer of the three-layered architecture) inspired by the Multilevel Process Theory of Emotion on one hand, and hybrid robotic architecture on the other hand. The sensory-motor level receives and processes incoming stimuli with fuzzy logic and produces emotion-like states without any further willful planning or learning. We will discuss how Petra has been equipped with sonar and vision for obstacle avoidance as well as vision for face recognition, which are used when she roams around the hallway to engage in social interactions with humans. We hope that the sensory motor level in Petra could serve as a foundation for further works in modeling the three-layered architecture of the Emotion State Generator. / M.S. / School of Computer Science / Engineering and Computer Science / Computer Science
8

Towards Socially Intelligent Robots in Human Centered Environment / Vers des robots socialement intelligents en environnement humain

Pandey, Amit kumar 20 June 2012 (has links)
Bientôt, les robots ne travailleront plus de manière isolée mais avec nous. Ils entrent peu à peu dans notre vie de tous les jours pour coopérer, assister, aider, servir, apprendre, enseigner ou même jouer avec l'homme. Dans ce contexte, nous considérons que ce ne doit pas être à l'homme de s'adapter au robot. Au contraire, le robot doit être capable d'intégrer, dans ses stratégies de planification et de décision, différents facteurs d'effort et de confort et de prendre en compte les préférences et désirs de l'homme ainsi que les normes sociales de son environnement. Tout en respectant les principes de sécurité réglementaire, le robot doit se comporter, naviguer, manipuler, communiquer et apprendre d'une manière qui soit pertinente, acceptée et compréhensible par l'homme. Cette thèse explore et définit les ingrédients clés nécessaires au robot pour développer une telle intelligence socio-cognitive. Elle définit également un cadre pour l'interaction homme-robot permettant de s'attaquer à ces challenges dans le but de rendre le robot socialement intelligent / Robots will no longer be working isolated from us. They are entering into our day-to-day life to cooperate, assist, help, serve, learn, teach and play with us. In this context, it is important that because of the presence of robots, the human should not be on compromising side. To achieve this, beyond the basic safety requirements, robots should take into account various factors ranging from human’s effort, comfort, preferences, desire, to social norms, in their various planning and decision making strategies. They should behave, navigate, manipulate, interact and learn in a way, which is expected, accepted, and understandable by us, the human. This thesis begins by exploring and identifying the basic yet key ingredients of such socio-cognitive intelligence. Then we develop generic frameworks and concepts from HRI perspective to address these additional challenges, and to elevate the robots capabilities towards being socially intelligent
9

Interaction Design for Remote Control of Military Unmanned Ground Vehicles

Saleh, Diana January 2021 (has links)
The fast technology development for military unmanned ground vehicles (UGVs) has led to a considerable demand to explore the soldier’s role in an interactive UGV system. This thesis explores how to design interactive systems for UGVs for infantry soldiers in the Swedish Armed Force. This was done through a user-centered design approach in three steps; (1) identifying the design drivers of the targeted military context through qualitative observations and user interviews, (2) using the design drivers to investigate concepts for controlling the UGV, and (3) create and evaluate a prototype of an interactive UGV system design. Results from interviews indicated that design drivers depend on the physical and psychological context of the intended soldiers. In addition, exploring the different concepts showed that early conceptual designs helped the user express their needs of a non-existing system. Furthermore, the results indicate that an interactive UGV system does not necessarily need to be at the highest level of autonomy in order to be useful for the soldiers on the field. The final prototype of an interactive UGV system was evaluated using a demonstration video, a Technology Acceptance Model (TAM), and semi-structured user interviews. Results from this evaluation suggested that the soldiers see the potential usefulness of an interactive UGV system but are not entirely convinced. In conclusion, this thesis argues that in order to design an interactive UGV system, the most critical aspect is the soldiers’ acceptance of the new system. Moreover, for soldiers to accept the concept of military UGVs, it is necessary to understand the context of use and the needs of the soldiers. This is done by involving the soldiers already in the conceptual design process and then throughout the development phases.

Page generated in 0.1268 seconds