Spelling suggestions: "subject:"stabilizationsolidification"" "subject:"fordehumidification""
1 |
Efficiency Improvements in a Horizontal Humidification-Dehumidification UnitJanuary 2015 (has links)
abstract: The horizontal desalination units belonging to the humidification-dehumidification family purify water using air as a carrier gas. The temperature required for separation can vary from ambient to 99 °C so waste heat, fuel combustion, or solar collectors can drive the process. A unit in which air flows horizontally affords several advantages over similar vertical “Dewvaporation” towers (as an example), including ease of construction and potentially increased efficiency. The objective was to build and test horizontal units and identify areas of potential efficiency improvements. The desalination units consisted of: 1.) A series of aligned, corrugated, polypropylene sheets covered on the outside with absorbent, water-wettable cloth. 2.) A basin that caught saline water flowing downward from the absorbent cloth. 3.) Ten pumps to cycle the basin water back onto the cloth. 4.) An air blower on the front of the unit that drove air horizontally across the cloth, increasing the humidity of the air. 5.) A steam generator on the back of the unit producing steam that mixed with the incoming air to increase the temperature and humidity. 6) A steam box that caused the air to mix with the steam and return to flow inside the corrugations in the plastic sheets, creating a countercurrent heat exchanger as the exiting air transferred its heat to the incoming air and causing purified water to condense from the cooling, oversaturated air. The tested unit produced distillate at a rate of 0.87 gallons per hour with 13 parts per million total dissolved solids and an energy reuse factor of 2.5. Recommendations include the implementation of a continuous longitudinal pump design, a modification of the basin to accommodate top and bottom unit center dividers, increase in insulation coverage, and optimization of air flow rate. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2015
|
2 |
Modelling and Simulation of Humidification-Dehumidification Process for Seawater Desalination Dual Powered by Biomass and Solar EnergyKaunga, Damson, Patel, Rajnikant, Mujtaba, Iqbal 25 March 2022 (has links)
Yes / The use of solar thermal energy for water desalination processes is increasing rapidly, particularly in areas where these resources are plentiful. However, solar energy plants are highly affected by the intermittency of day -night cycles and by low irradiation seasons. Although biomass fuel can be used as source of energy for thermal desalination processes, these resources are becoming increasingly scarce, expensive and seasonally available. Integration of solar-biomass technologies for water desalination process may provide the solution to these challenges. This work investigates design options of the Humidification-Dehumidification desalination system integration with the solar-biomass energies. The investigation is based on simulation of the process models in gPROMS platform. Results show that the solar-biomass integrated plant with a thermal storage system can save up to 57 % of the daily energy cost compared to conventional biomass plant. The integrated plant also cuts the CO2 emission by 59 %. Moreover, it has higher daily production capacity than conventional solar plants. / The authors wish to thank the Commonwealth Scholarship Commission in the UK (CSC) for financial support under PhD Scholarships Plan for Low and Middle Income Countries.
|
3 |
Modelling, Simulation and Optimisation of Multistage Humidification and Dehumidification Desalination Plant Using Solar Energy. Performance Evaluation and Improvement of the Humidification-Dehumidification Desalination Process through Modelling, Simulation and Optimisation TechniquesKaunga, Damson L. January 2022 (has links)
Serious social and economic disruptions are unfolding worldwide over the finite water and energy resources; hence, securing fresh water supply and employing renewable energy sources will help avoid catastrophic conflicts, continue modern lifestyles, and circumvent global warming and pollution. For this reason, a new method known as Humidification-Dehumidification (HDH) desalination process has been developed to address the challenge of water shortage. The aim of this research was to build the detailed mechanistic models with the increased capability to predict more accurately as well as to simulate and optimise the Multistage Humidification-Dehumidification (MHDH) desalination plant which is powered by solar energy.
The poor prediction accuracy is major bottleneck for most of conventional models. Mechanistic models for HDH desalination process derived from non-linear mathematical equations offers a promising solution to overcome this challenge. This study proposes a mechanistic model which is formulated by combining the enthalpy equations with the models which govern the mass and heat transfer across a thin film that separates water and air phases within the humidifier and dehumidifier. The proposed model is validated by using the data which were obtained from the physical experiments. Moreover, an experimental rig was designed and fabricated to specifically generate the physical data.
From the experimental and mathematical analysis, it was observed that the Recovery Ratio (RR) attained was increasing as temperature of the feed water increased. The RR was also increasing with the increase of dehumidifier’s surface area while it decreased with an increase of the packing size. Moreover, through a sensitivity analysis the highly influential parameters to the process model were identified to better understand the energy-efficient design principles and operating strategies for the maximum performance of the system.
Finally, a two stages HDH hybrid system that uses solar and biomass as source of energy is proposed whereby, an optimisation problem is solved to achieve the optimum RR. A maximum of 2 stages were required for a system to operate optimally. / Commonwealth Scholarship Commission in the UK (CSC) under PhD Scholarships Plan for Low and Middle Income Countries
|
4 |
Theoretical And Experimental Investigation Of A Humidification-dehumidification Desalination System Using Solar EnergySolmus, Ismail 01 September 2006 (has links) (PDF)
In this thesis, experimental and numerical studies have been carried out to investigate the performance of a solar desalination system working on humidification-dehumidification principle under the climatological conditions of Ankara, Turkey. The desalination unit was configured mainly by a double-pass flat plate solar air heater with two glass covers, pad humidifier, storage tank and dehumidifying exchanger. The system used in this work is based on the idea of closed water and open air cycles. A computer simulation program based on the mathematical model was developed by means of MATLAB software to study the effect of different environmental, design, and operational parameters on the desalination system productivity. In this simulation program, the fourth order Runge-Kutta method was used to solve the energy balance equations simultaneously and numerically. In order to compare the obtained theoretical results with experimental ones and validate of the developed mathematical model of the system, an experimental study has been carried out. For that, an experimental set-up was designed, constructed and tested at the solar house of the Mechanical Engineering Department of METU. In addition, the existing solar desalination system was integrated with an evacuated tubular solar water heater unit (closed water circulation) and performance of the system has been studied experimentally.
|
Page generated in 0.133 seconds