• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Forecasting Codeword Errors in Networks with Machine Learning / Prognostisering av kodordsfel i nätverk med maskininlärning

Hansson Svan, Angus January 2023 (has links)
With an increasing demand for rapid high-capacity internet, the telecommunication industry is constantly driven to explore and develop new technologies to ensure stable and reliable networks. To provide a competitive internet service in this growing market, proactive detection and prevention of disturbances are key elements for an operator. Therefore, analyzing network traffic for forecasting disturbances is a well-researched area. This study explores the advantages and drawbacks of implementing a long short-term memory model for forecasting codeword errors in a hybrid fiber-coaxial network. Also, the impact of using multivariate and univariate data for training the model is explored. The performance of the long short-term memory model is compared with a multilayer perceptron model. Analysis of the results shows that the long short-term model, in the vast majority of the tests, performs better than the multilayer perceptron model. This result aligns with the hypothesis, that the long short-term memory model’s ability to handle sequential data would be superior to the multilayer perceptron. However, the difference in performance between the models varies significantly based on the characteristics of the used data set. On the set with heavy fluctuations in the sequential data, the long short-term memory model performs on average 44% better. When training the models on data sets with longer sequences of similar values and with less volatile fluctuations, the results are much more alike. The long short-term model still achieves a lower error on most tests, but the difference is never larger than 7%. If a low error is the sole criterion, the long short-term model is the overall superior model. However, in a production environment, factors such as data storage capacity and model complexity should be taken into consideration. When training the models on multivariate and univariate datasets, the results are unambiguous. When training on all three features, ratios of uncorrectable and correctable codewords, and signal-to-noise ratio, the models always perform better. That is, compared to using uncorrectable codewords as the only training data. This aligns with the hypothesis, which is based on the know-how of hybrid fiber-coaxial experts, that correctable codewords and signal-to-noise ratio have an impact on the occurrence of uncorrectable codewords. / På grund av den ökade efterfrågan av högkvalitativt internet, så drivs telekomindustrin till att konsekvent utforska och utveckla nya teknologier som kan säkerställa stabila och pålitliga nätverk. För att kunna erbjuda konkurrenskraftiga internettjänster, måste operatörerna kunna förutse och förhindra störningar i nätverken. Därför är forskningen kring hur man analyserar och förutser störningar i ett nätverk ett väl exploaterat område. Denna studie undersökte för- och nackdelar med att använda en long short-term memory (LSTM) för att förutse kodordsfel i ett hybridfiber-koaxialt nätverk. Utöver detta undersöktes även hur multidimensionell träningsdata påverkade prestandan. I jämförelsesyfte användes en multilayer perceptron (MLP) och dess resultat. Analysen av resultaten visade att LSTM-modellen presterade bättre än MLP-modellen i majoriteten av de utförda testerna. Men skillnaden i prestanda varierade kraftigt, beroende på vilken datauppsättning som användes vid träning och testning av modellerna. Slutsatsen av detta är att i denna studie så är LSTM den bästa modellen, men att det inte går att säga att LSTM presterar bättre på en godtycklig datauppsättning. Båda modellerna presterade bättre när de tränades på multidimensionell data. Vidare forskning krävs för att kunna determinera om LSTM är den mest självklara modellen för att förutse kodordsfel i ett hybridfiber-koaxialt nätverk.
2

Unsupervised Anomaly Detection and Root Cause Analysis in HFC Networks : A Clustering Approach

Forsare Källman, Povel January 2021 (has links)
Following the significant transition from the traditional production industry to an informationbased economy, the telecommunications industry was faced with an explosion of innovation, resulting in a continuous change in user behaviour. The industry has made efforts to adapt to a more datadriven future, which has given rise to larger and more complex systems. Therefore, troubleshooting systems such as anomaly detection and root cause analysis are essential features for maintaining service quality and facilitating daily operations. This study aims to explore the possibilities, benefits, and drawbacks of implementing cluster analysis for anomaly detection in hybrid fibercoaxial networks. Based on the literature review on unsupervised anomaly detection and an assumption regarding the anomalous behaviour in hybrid fibercoaxial network data, the kmeans, SelfOrganizing Map, and Gaussian Mixture Model were implemented both with and without Principal Component Analysis. Analysis of the results demonstrated an increase in performance for all models when the Principal Component Analysis was applied, with kmeans outperforming both SelfOrganizing Map and Gaussian Mixture Model. On this basis, it is recommended to apply Principal Component Analysis for clusteringbased anomaly detection. Further research is necessary to identify whether cluster analysis is the most appropriate unsupervised anomaly detection approach. / Följt av övergången från den traditionella tillverkningsindustrin till en informationsbaserad ekonomi stod telekommunikationsbranschen inför en explosion av innovation. Detta skifte resulterade i en kontinuerlig förändring av användarbeteende och branschen tvingades genomgå stora ansträngningar för att lyckas anpassa sig till den mer datadrivna framtiden. Större och mer komplexa system utvecklades och således blev felsökningsfunktioner såsom anomalidetektering och rotfelsanalys centrala för att upprätthålla servicekvalitet samt underlätta för den dagliga driftverksamheten. Syftet med studien är att utforska de möjligheterna, för- samt nackdelar med att använda klusteranalys för anomalidetektering inom HFC- nätverk. Baserat på litteraturstudien för oövervakad anomalidetektering samt antaganden för anomalibeteenden inom HFC- data valdes algritmerna k- means, Self- Organizing Map och Gaussian Mixture Model att implementeras, både med och utan Principal Component Analysis. Analys av resultaten påvisade en uppenbar ökning av prestanda för samtliga modeller vid användning av PCA. Vidare överträffade k- means, både Self- Organizing Maps och Gaussian Mixture Model. Utifrån resultatanalysen rekommenderas det således att PCA bör tillämpas vid klusterings- baserad anomalidetektering. Vidare är ytterligare forskning nödvändig för att avgöra huruvida klusteranalys är den mest lämpliga metoden för oövervakad anomalidetektering.

Page generated in 0.0479 seconds