• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid polymer/liquid vesicles as new particles for drug delivery and cell mimics / Vésicules hybrides lipide/polymères comme nouveaux systèmes de vectorisation et modèles de membranes cellulaires

Dao, Thi Phuong Tuyen 16 December 2016 (has links)
Les vésicules hybrides polymère/lipides sont des structures récemment développées dans la littérature. Idéalement, celles-ci peuvent présenter la biocompatibilité et la biofonctionnalité des liposomes, ainsi que la robustesse, la faible perméabilité et la versatilité de fonctionnalisation chimique conférées par les chaînes de copolymères. Cependant, à ce jour, les facteurs régissant la séparation des phases dans ces membranes hybrides ne sont pas bien compris. Dans ce travail, nous avons étudié en détail la formation et la séparation de phases dans les membranes de vésicules géantes (GHUVs) et de taille nanométriques(100nm) (LHUVs) constituées de phospholipides en phase fluide ou gel et de copolymères à base de poly (diméthylsiloxane) et de poly (éthylène glycol). Différentes architectures(greffée, tribloc) et masses molaires ont été utilisées. La séparation de phase a été étudiée sur les vésicules géantes à l’échelle micrométrique et nanométrique respectivement par microscopie confocale et imagerie de fluorescence résolue en temps (FLIM), tandis que pour les LHUVs, différentes techniques comme la diffusion de neutrons, la Cryo-microscopie et la spectroscopie de fluorescence résolue dans le temps ont été combinées. Nous avons pu montrer que la fraction lipide/polymère, l'état physique du lipide et la tension de la ligne aux interfaces lipide/polymère modulable par la masse molaire et l'architecture du copolymère sont les facteurs importants régissant la formation et la structuration des vésicules hybrides. Enfin, nous avons montré que les propriétés élastiques de la membrane peuvent être modulées via la composition polymère lipide. / Hybrid copolymer/lipid vesicle are recently developed self-assembled structures that could present biocompatibility and biofunctionality of liposomes, as well as robustness, low permeability and functionality variability conferred by the copolymer chains. However, to date, physical and molecular parameters governing copolymer/lipid phase separation in these hybrid membranes are not well understood. In this work, we studied in detail the formation and phase separation in the membranes of both Giant Unilamellar Hybrid Vesicles(GHUVs) and Large Unilamellar Hybrid Vesicles (LHUVs) obtained from the mixture of phospholipids in the fluid (liquid disordered) or gel state (solid ordered) with various copolymers based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEO) with different architectures (grafted, triblock) and molar masses. For GHUVs, phase separation at the micron scale and nanoscale was evaluated through confocal microscopy, and Fluorescence lifetime imaging microscopy technique (FLIM) respectively, where as acombination of Small angle neutron scattering (SANS), Cryo-transmission electron microscopy (Cryo-TEM) and Time-resolved Förster resonance energy transfer (TR-FRET) techniques was used for LHUVs. We demonstrate that the lipid/polymer fraction, lipid physical state, and the line tension at lipid polymer/lipid boundaries which can be finely modulated by the molar mass and architecture of the copolymer are important factors that govern the formation and structuration of hybrid vesicles. We also evidence that elasticity ofthe hybrid membrane can be modulated via the lipid polymer composition, through the use of micropipettes techniques.
2

Interfacial Properties of Hybrid Lipid-Polymer Bilayers: Applications in Drug Delivery and Biosensors

Willes, Keith L. 07 December 2023 (has links) (PDF)
Amphiphilic block copolymers are unique macro-molecules capable of self-assembling into bilayers analogous to naturally occurring lipid membranes. When combined with lipids, these copolymers form hybrid membranes with unique and sometimes unpredictable properties, including increased chemical and mechanical stability. These synthetically enhanced biological structures represent a versatile platform suitable for a wide range of applications, from advanced biosensing devices to drug delivery systems. The realization of these advancements necessitates a deep understanding of material properties, including the ability to predict and control interfacial behaviors. It has been shown that in the case of pure lipid membranes, interfacial behaviors are dominated by electrostatic forces. The following work will demonstrate that, electrostatic forces also represent a major driving force behind hybrid vesicle adhesion events, such as the formation of supported bilayers or interactions with biological tissues. These electrostatic forces can be manipulated to a limited degree by adjusting suspension buffer pH which primarily modulates the substrate zeta potential. Protonation of silanol groups, in the case of silicate surfaces at low pH, results in slightly positive surface zeta potential. Unfortunately, hybrid vesicles containing BdxEOy polymers exhibit a slight negative zeta potential independent of buffer pH conditions. Therefore, pH mediation can only result in supported bilayer formation in limited cases and may be insufficiently robust for many demands of application. Furthermore, the zeta potential of hybrid vesicles is surprisingly difficult to predict and control, likely due to screening and steric effects of the PEO block. This investigation provides a model to tune and control the zeta potential of such vesicles, independent of other tunable properties. This technique, in combination with pH mediation, proves to be especially effective in controlling vesicle-substrate interaction. Furthermore, translating this understanding to interactions with tissues, could facilitate more targeted drug delivery, potentially avoiding sensitive tissues, thus reducing off-target effects. In summary, this work deepens our understanding of the complex relationship between surface-potential, pH conditions, and vesicle behavior, paving the way for novel applications in bio-sensing, drug delivery, and nanotechnology.

Page generated in 0.0345 seconds