Spelling suggestions: "subject:"polymers""
1 |
Functionalization of Poly(Ethylene Oxide)-based Diblock Copolymer VesiclesKinnibrugh Garcia, Karym G. 2010 May 1900 (has links)
The principal goal of this research is to achieve the chemical labeling and surface modification of block copolymer vesicles (polymersomes) made from amphiphilic diblock copolymer Poly(butadiene-b-ethylene oxide) (PBd120- PEO89, MW 10400 g/mol) with the aim of developing possible drug carrier vehicles for controlled release of molecules triggered by stimuli-responsive environments.
The terminal hydroxyl group of poly(ethylene oxide) (PEO), or poly(ethylene glycol) is converted into its corresponding carboxylic acid by a novel one-pot two-phase oxidation reaction. This regioselective and catalytic reaction assures the preservation of important structural characteristic of the block copolymers. Vesicles formed by a mixture of the carboxylate and unmodified block copolymer exhibit an increment in the critical aggregation concentration (CAC) value while the averaged vesicle size decreases demonstrating that the negative charges in the modified diblock copolymer disrupt the vesicle formation process.
The carboxylated reactive intermediates are subsequently subjected to a covalent coupling reaction in organic solvent to replace the terminal hydroxyl of the PEO block. The obtained functionalized diblock copolymers are effectively incorporated into the vesicle bilayer. Also, surface density control in polymersomes of fluorescently modified diblock copolymers, synthesized by the amination reaction, is achieved.
To demonstrate the ability of this polymersomes as carrier vehicles, a Noradrenaline functionalized vesicle is placed in closed contact with rat aortic smooth muscle cells (RASMC) using the micropipette aspiration technique. A distinctive increase in fluorescent intensity of cells is observed. It indicates that the drug molecule has been transported by the polymersome and internalized by the cell. In addition, diblock copolymers containing a disulfide moiety and a fluorophore are synthesized and studied through fluorescent microscopy. Vesicles are formed with this polymer and a decrease in fluorescent intensity is observed in the vesicle's bilayer after its exposure to a reductive environment. These results indicate that fluorophore molecules are successfully released into solution.
|
2 |
Stimuli-responsive polymersomes : Thermosensitivity and biodegradability / Polymersomes stimulables : Thermosensibilité et biodégradabilitéHocine, Sabrina Khedoudja 28 February 2013 (has links)
Les polymersomes sont des vésicules dont la membrane est formée d'une bicouche de polymères amphiphiles. Les polymersomes dits stimulables sont particulièrement étudiés de nos jours pour leurs propriétés de relargage contrôlé. Ces propriétés peuvent être ajustées simplement en variant la nature chimique du polymère constituant la membrane vésiculaire.Dans le cadre de ce travail de thèse, nous nous sommes intéressés à des polymersomes originaux, assemblés à partir de copolymères cristaux liquides. Ces copolymères comprennent un bloc cristal liquide hydrophobe et un bloc poly(ethylene glycol) (PEG) hydrophile. Les cristaux liquides sont des entités particulièrement intéressantes pour leur capacité d'auto-assemblage et leurs réponses aux stimuli physiques tels la température, les champs magnétiques et la lumière.Plusieurs types de polymersomes basés sur des copolymères cristaux liquides ont été étudiés en température et en champ magnétique. L'effet thermique est drastique, perturbant totalement la morphologie vésiculaire au dessus d’une température critique. Différents hybrides de nanoparticules d’oxyde de fer et de polymères cristaux liquides ont aussi été examinés dans le but d’induire un chauffage local par hyperthermie magnétique.Enfin, nous décrivons la synthèse de copolymères amphiphiles cristaux liquides biodégradables incluant des motifs cholesterol. L'auto-assemblage de ces molécules en milieu aqueux a permis la formation de nanoparticules bien définies et prometteuses pour des applications de relargage en milieu biologique. / Polymersomes are vesicles whose bilayer is made of amphiphilic polymers. Stimuli responsive polymersomes are nowadays increasingly studied for their encapsulation properties and ability to release their content upon stimulation. Such smart polymersomes can be designed by using appropriate responsive building blocks.In the present study, we were interested in studying thermoresponsive and biodegradable polymersomes made of liquid crystalline (LC) amphiphilic copolymers. LC polymers represent here the hydrophobic block while the hydrophilic block consists in poly(ethylene glycol) (PEG). LC polymers are very good self-assocative building blocks and are intrinsically responsive to physical stimuli such as temperature, light and magnetic fields.We report here the investigation of temperature effects on liquid crystalline and non liquid crystalline polymersomes. Temperature was shown to alter dramatically LC polymersomes morphology above a critical thermal threshold. Hybrid colloids made of iron oxide nanoparticles and amphiphilic liquid crystalline copolymers were also studied with the aim of applying a magnetically induced local heating.Finally, we designed biodegradable liquid crystalline copolymers based on cholesterol. Their self assembly in water gave access to very well defined nanoparticles that could be promising for bioapplications.
|
3 |
Développement de cellule synthétique comme micro-réacteur pour l'étude de l'activité enzymatique des NO-synthases et la compréhension de leur fonctionnement en conditions physiologiques / Single synthetic cell microreactor for the fundamental understanding of NOS enzymatic activity and its implication in system biologyBeauté, Louis 27 May 2019 (has links)
Le monoxyde d’azote (NO), un neurotransmetteur important en biologie, a attiré l’attention ces dernières années pour son rôle majeur joué dans l’apparition d’une myriade de maladies telles que certains cancers, diabètes etc. Comprendre les mécanismes biologiques liés à la production du NO pourrait aboutir à la découverte de nouveaux moyens thérapeutiques. Cependant, le fonctionnement de l’enzyme qui produit le monoxyde d’azote, la NO-Synthase, n’est pas complétement élucidé. Dans ce but, des approches biomimétiques peuvent apporter une solution. Les microréacteurs ou proto-cellules, enveloppes imitant sommairement la compartimentation cellulaire sont un outil de choix, permettant de répliquer un environnement contrôlé où les concentrations et distances de réactions sont proches d’une cellule, permettant ainsi d’étudier le fonctionnement de la NO-Synthase. Cette thèse présente trois problématiques qui ont pour but de développer un tel microréacteur encapsulant la NO-Synthase : (1) la libération contrôlé d’espèces réactives déclenchée par un stimulus lumineux, (2) le suivi de l’activité de l’enzyme par des sondes fluorescentes et (3) le contrôle de la réaction enzymatique dans l’espace et dans le temps. Deux systèmes ont été étudiés pour libérer de manière contrôlée des espèces: la première consiste à déstabiliser des nano polymersomes par photo-clivage du copolymère qui le constitue. Le deuxième système est basé sur une rapide augmentation de la pression osmotique par irradiation à l’intérieur des polymersomes, induisant un éclatement de ceux-ci et la libération d’espèces encapsulées. La deuxième problématique abordée est le suivi de l’activité enzymatique au moyen de sondes hydrophobes et hydrophiles fluorescentes qui détectent le monoxyde d’azote à différent endroits du microréacteur. Le dernier point abordé est l’étude des microréacteur et la libération contrôlé en leur sein. / Nitric oxide (NO) has been identified as an important chemical messenger in cells and living organisms. Understanding the mechanism involved in NO production by NO-synthase is of fundamental importance. Mimicking basic cell functions by encapsulating NO-synthase in a controlled and confined cell like environment, could help provide information about the enzyme. Polymersomes resulting from the self-assembly of amphiphilic block copolymers were used as the synthetic cell like microreactor. To this end, three major challenges were addressed in this thesis: (1) controlling species release and concentration inside the microreactor, (2) measuring the enzyme response by NO detection and (3) controlling enzymatic reactions in space and time inside a microreactor. Light was used as the exogenous stimulus to induce release; its application is instantaneous, non-invasive and easy to control spatially and temporally. Two different ways to release species via light excitation were explored. The first strategy involves destabilization of nanopolymersomes by block separation, induced by copolymer photocleavage. The second strategy was to induce fast osmotic pressure increase of the polymersomes internal medium, resulting in bursting and species release. In order to monitor NO production by NO-synthase in different parts of the microreactor, hydrophobic and hydrophilic fluorescent NO probes have been synthesized and studied showing excellent correlation with NO concentration. The release of species inside microreactor was finally achieved in order to control enzymatic reaction.
|
4 |
Vésicules polymères biomimétiques : du virus à la cellule / Polymer vesicles : from virus to cell biomimicryMarguet, Maïté 19 December 2012 (has links)
Les polymersomes, obtenus par auto-assemblage en solution aqueuse de copolymères à blocs amphiphiles en structure vésiculaire, sont présentés comme d’excellent mimes synthétiques des virus, dont les propriétés membranaires – principalement élasticité, perméabilité, fonctionnalité- peuvent être très proches. Il y a ainsi un fort engouement quant à leur utilisation en biotechnologie et surtout en vectorisation d’actifs pharmaceutiques ou cosmétiques. Afin d’aller encore plus loin dans le biomimétisme ou la bio-inspiration, une étape devait être franchie : encapsuler ces polymersomes les uns dans les autres. Ce cloisonnement ou multi-compartimentalisation permet de mimer cette fois la structure d’une cellule dite eukaryote, elle-même constituée de compartiments internes (organelles) et d’un cytoplasme (lui conférant entre autres une certaine stabilité mécanique) contenues dans le compartiment externe représenté par la membrane cellulaire. Toutefois, l’obtention d’un simple mime structural d’une structure si complexe représente déjà un challenge en soi, nécessitant maîtrise de la physico-chimie des systèmes, de la stabilisation des interfaces et des outils de formulation. Une méthode d’émulsion-centrifugation a été développée et a permis d’obtenir de telles structures compartimentalisées (mimes d’organelles) à cavité gélifiée (mime de cytoplasme). Finalement, différentes voies d’exploitation de ces systèmes sont présentées, allant de l’encapsulation multiple, la libération contrôlée jusqu’au développement de réactions enzymatiques en cascade confinées, mimant ainsi le métabolisme cellulaire. / Amphiphilic block copolymers self-assemble in water into vesicles, coined “polymersomes”; these vesicles are described as excellent synthetic mimics of viral capsids due to the resemblance of their respective membrane properties (in terms of elasticity, permeability, and functionality). As a result, they were massively investigated over the last years regarding applications in biotechnology and more particularly for the targeted delivery of pharmaceutical or cosmetic actives.In order to go further towards bio-inspiration and cell biomimicry, the next step required the encapsulation of polymersomes in other polymersomes. This multicompartmentalization indeed enables to mimic the structure of an eukaryotic cell; an outer cellular membrane compartment encloses internal compartments (organelles) and a cytoplasm responsible amongst others for a certain mechanic stability. However, alone the controlled formation of a system mimicking such a complex structure represents a technological challenge in terms of control over the physical chemistry of these systems, the stabilization of their interfaces and their formulation. A formation method based upon an emulsion-centrifugation has been developed and enabled the formation of such multicompartmentalized structures (organelle mimics) with a gelified lumen (cytoplasm mimic). Finally, various potential applications of these systems are presented: from multiple encapsulation, controlled drug release, to the development of enzymatic and confined cascade reactions that mimick the cellular metabolism.
|
5 |
Vésicules polymères biomimétiques : vers un biomimétisme cellulaire structurel et fonctionnel / Biomimetic polymer vesicles : towards structural and functional cell biomimicryPeyret, Ariane 24 October 2017 (has links)
Les copolymères à blocs amphiphiles peuvent s’auto-assembler sous forme de vésicules,appelées polymersomes. Ces vésicules ont été développées et étudiées depuis de nombreusesannées notamment pour l’encapsulation et la délivrance contrôlée de médicaments. Depuisquelques temps, elles connaissent des applications dans le domaine du biomimétisme cellulaire.Plus robustes que leurs analogues lipidiques (liposomes), les avantages à utiliser lespolymersomes comme mimes synthétiques de cellules biologiques ne sont plus à démontrer.Ainsi, des structures compartimentées à base de polymères ont été développés comme mimesstructurels de cellules. Ces systèmes ont été utilisés comme bioréacteurs, avec la réalisation deréactions chimiques ou enzymatiques en cascade en milieu confiné. Toutefois, l’un desobstacles qu’il reste à franchir est de trouver des moyens simples et efficaces pour déclencherla réaction au sein de ces systèmes. C’est dans ce contexte que s’inscrivent les travaux de cettethèse. Une membrane synthétique asymétrique à base de lipide et polymère a été développée etla méthode d’émulsion-centrifugation a été utilisée pour produire des systèmes compartimentésbiomimétiques. De plus, deux approches différentes ont été suivies pour provoquer la libérationcontrôlée d’espèces encapsulées, l’une utilisant la température et l’autre la lumière. Enfin, desétudes de co-encapsulation de cellules synthétiques (polymersomes) et biologiques au sein demilieux 3D ont été réalisées dans le but d’évaluer leur compatibilité et la possibilité de les cocultiver. / Amphiphilic block copolymers can self-assemble into vesicles, also called polymersomes.These vesicles have been developed and studied for many years especially in the field of drugloading and controlled release. More recently, their use as cell mimics have attracted a lot ofattention, mainly because polymersomes exhibit many advantages in contrast to their lipidicanalogues (liposomes). In such, compartmentalized polymer systems have especially beendeveloped as structural mimics of cells. These systems have found applications as bioreactorsthat can confine cascade chemical or enzymatic reactions. However, a major goal that stillremains to achieve is to find ways to trigger the beginning of these chemical reactions insidethe compartmentalized structures. The work carried out during this PhD thesis was actually totackle this challenge. A synthetic asymmetric lipid – polymer membrane, that mimics themembrane of biological cells was developed and the emulsion-centrifugation protocol wasfollowed to prepare biomimetic compartmentalized structures. In addition, two different waysto control the independent release of multiple species from individual compartments weredeveloped, based on temperature or light activation. Lastly, co-encapsulation of synthetic cells(polymersomes) and biological cells were performed in 3D media with the aim to study theircompatibility for co-culture experiments.
|
6 |
Large Two-photon Absorption of Highly Conjugated Porphyrin Arrays and Their in vivo ApplicationsPark, Jong Kang January 2015 (has links)
<p>Two-photon excited fluorescence microscopy (TPM) has become a standard biological imaging tool due to its simplicity and versatility. The fundamental contrast mechanism is derived from fluorescence of intrinsic or extrinsic markers via simultaneous two-photon absorption which provides inherent optical sectioning capabilities. The NIR-II wavelength window (1000–1350 nm), a new biological imaging window, is promising for TPM because tissue components scatter and absorb less at longer wavelengths, resulting in deeper imaging depths and better contrasts, compared to the conventional NIR-I imaging window (700–1000 nm). However, the further enhancement of TPM has been hindered by a lack of good two-photon fluorescent imaging markers in the NIR-II. </p><p>In this dissertation, we design and characterize novel two-photon imaging markers, optimized for NIR-II excitation. More specifically, the work in this dissertation includes the investigation of two-photon excited fluorescence of various highly conjugated porphyrin arrays in the NIR-II excitation window and the utilization of nanoscale polymersomes that disperse these highly conjugated porphyrin arrays in their hydrophobic layer in aqueous environment. The NIR-emissive polymersomes, highly conjugated porphyrins-dispersed polymersomes, possess superb two-photon excited brightness. The synthetic nature of polymersomes enables us to formulate fully biodegradable, non-toxic and surface-functionalized polymersomes of varying diameters, making them a promising and fully customizable multimodal diagnostic nano-structured soft-material for deep tissue imaging at high resolutions. We demonstrated key proof-of-principle experiments using NIR-emissive polymersomes for in vivo two-photon excited fluorescence imaging in mice, allowing visualization of blood vessel structure and identification of localized tumor tissue. In addition to spectroscopic characterization of the two-photon imaging agents and their imaging capabilities/applications, the effect of the laser setup (e.g., repetition rate of the laser, peak intensity, system geometry) on two-photon excited fluorescence measurements is explored to accurately measure two-photon absorption (TPA) cross-sections. A simple pulse train shaping technique is demonstrated to separate pure nonlinear processes from linear background signals, which hinders accurate quantification of TPA cross-sections.</p> / Dissertation
|
7 |
Desenvolvimento de vesículas poliméricas de poli(etileno glicol)-b-poli(ε-caprolactona) (PEG-PCL) para veiculação de L-asparaginase / Development of polyethylene glycol-polycaprolactone polymer vesicles for L-AsparaginaseVasconcelos, Juliana de Almeida Pachioni 21 June 2018 (has links)
A L-Asparaginase (ASNase) é um importante agente quimioterapêutico utilizado para o tratamento da leucemia linfoblástica aguda (ALL) há mais de 40 anos. No entanto, devido à origem biológica da ASNase, enzima produzida por Escherichia coli, problemas como a imunogenicidade e baixa meia vida-plasmática devem ser considerados. Com o objetivo de minimizar essas desvantagens, várias ASNases homólogas bem como formulações de ASNase de E. coli foram investigadas. Nenhuma das formulações desenvolvidas, entretanto, foi capaz de resolver definitivamente esses problemas associados à sua origem. Nesse sentido, considerando os recentes avanços na ciência de polímeros com a possibilidade do obtenção de vesículas poliméricas usando copolímeros, este trabalho concentrou-se no desenvolvimento de polimerossomos de poli(etileno glicol)-b-poli(ε-caprolactona) (PEG-PCL) para encapsular a ASNase. Diversas condições experimentais foram investigadas e, ao final, os polimerossomos foram produzidos pela técnica de hidratação do filme polimérico utilizando a centrifugação como técnica de pós-filme para remoção de copolímero precipitado, produzindo assim vesículas polímericas de 120 a 200nm com PDI de aproximadamente 0,250. A eficiência de encapsulação da ASNase, utilizando as metodologias de centrifugação ou cromatografia de exclusão molecular, revelou taxas de encapsulação de 20-25% e 1 a 7%, repectivamente. Esses resultados apontam a importância de se determinar a eficiência de encapsulação por cromatografia de exclusão molecular ou método direto no caso de nanoestruturas auto-agregadas formadas por copolímeros, devido a valores superestimados com o emprego da centrifugação. Ainda que estudos complementares se façam necessários para liberação da enzima encapsulada ou penetração da L-asparagina nas vesículas, nossos resultados demonstram o potencial de polimerossomos para veiculação de ASNase, bem como de outras proteínas terapêuticas. / L-Asparaginase (ASNase) is an important chemotherapeutic agent used for the treatment of acute lymphoblastic leukemia (ALL) for more than 40 years. However, due to the biological origin of ASNase (produced by Escherichia coli) some drawbacks such as immunogenicity and low plasma half life are present. In order to minimize the disadvantages, several ASNases proteoforms and formulations of E. coli ASNase were investigated. However, none of this formulations completely solved the main drawbacks of ASNase. In this sense, considering the recents advances in polymers science with the possibility to develop polymeric vesicles using copolymers, this work aimed at the development of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) vesicles to encapsulate ASNase. Different experimental conditions were investigated and, the final polymersomes formulation was prepared by film hydratation using centrifugation as a post-film technique to remove the bulky coplymer. Polymeric vesicles of 120 to 200nm with PDI of approximately, 0.250 were obtained. The encapsulation efficiency of ASNase was determined indirectly by centrifugation and directly by size exclusion chromatography, resulting in encapsulation rates of 20-25% and 1 to 7%, respectively. These results indicate the importance of determining the efficiency of encapsulation by size exclusion chromatography or direct method in the case of self-aggregated nanostructures formed by copolymers, due to values overestimated with the use of centrifugation. Our results point to the potential of polymersomes for ASNase delivery, as well as other therapeutic proteins. Nonetheless, complimentary studies are still necessary for ASNase release or L-asparagine penetration into the vesicles.
|
8 |
Desenvolvimento e caracterização de polimerossomos para veiculação de L-asparaginase / Development and characterization of polymersomes for the release of L-asparaginaseAlexsandra Conceição Apolinário 03 October 2018 (has links)
A enzima L-Asparaginase (ASNase) é um biofámaco utilizado no tratamento da leucemia linfoblástica aguda, no entanto, a evolução da produção da ASNase como um medicamento desde o final da década de 1970 resultou em apenas quatro alternativas disponíveis no mercado farmacêutico, com relatos de graves reações imunogênicas e toxicidade. Desse modo, a nanotecnologia é uma plataforma que pode ser explorada para administração dessa enzima diminuindo a exposição da mesma a proteases e aumentando a sua meia-vida aparente. Os polimerossomos (PL) são opções que pela nanoestrutura vesicular poderiam encapsular a ASNase em seu core aquoso e pela presença de uma membrana polimérica, são mais robustos que os lipossomos. Assim, neste trabalho objetivou-se desenvolver PL para encapsulação da ASNase como uma alternativa às formulações deste biofármaco existentes. Foram desenvolvidos PL de PEG-PLA, PMPC-PDPA, PEG-PDPA e Pluronic® L-21. Foram estudados fatores relacionados à composição dos copolímeros (fração hidrofílica, responsividade a fatores externos tais como pH e temperatura) e métodos de elaboração (hidratação do filme polimérico, troca de pH e temperatura) bem como foi feita a caracterização dos PL obtidos (tamanho, índice de polidispersão, espessura de membrana, formação de excessivo bulk polimérico, obtenção de micelas). Também foi feito um planejamento racional para encapsulação da ASNase (hidratação direta do filme polimérico e encapsulação por eletroporação, autoagregação com encapsulação por troca de pH ou de temperatura). Para os PL preparados com PEG-PLA, a extrusão resultou em distribuição de tamanhos mais estreitos correspondentes aos valores de PDI de 0,345, 0,144 e 0,081 para PEG45-PLA69, PEG114-PLA153 e PEG114-PLA180, respectivamente. Foi demonstrado que copolímeros com menor fração hidrofóbica resultam em maior eficiência de encapsulação para proteínas, já que possuem volumes aquosos maiores. Com o PMPC25-PDPA72 foi possível encapsular em média três unidades de ASNase por vesículas através da eletroporação ou troca de pH, sendo que no primeiro método houve formação de túbulos e no último método as micelas não foram completamente removidas. Para PEG100-PDPA80, grandes agregados permaneceram após a purificação levando a um PDI alto, mas não foi observada a formação de túbulos, já a troca de pH para este copolímero resultou em maior perda de copolímeros como bulk polimérico precipitado. Para o copolimero tribloco Pluronic® L-121, foi observado que as vesículas eram estáveis durante uma semana à temperatura ambiente, contrariando o que era descrito na literatura. Nesses sistemas, quando preparados por hidratação do filme, a encapsulação da ASNase foi realizada por eletroporação mas a proteína não foi detectada dentro das vesículas. Atribuímos a não-encapsulação à organização da bicamada Pluronic® L-121 sem conformação definida das cadeias poliméricas, dificultando a reorganização do bloco hidrofílico na porção interna do poro durante eletroporação. Por troca de temperatura, cerca de 5 % de ASNase foi encapsulada e o método resultou em total recuperação da atividade da enzima. Desse modo foram obtidos diferentes PL com diferentes características nanoestruturais de acordo com os copolímeros utilizados para carreamento da ASNase. / The enzyme L-Asparaginase (ASNase) is a biopharmaceutical used in the treatment of acute lymphoblastic leukemia, still the industrial production of ASNase as a marketable drug since the late 1970s has resulted in only four alternatives available in the pharmaceutical market, with reports of severe immunogenic reactions and toxicity. In this sense, nanotechnology is a platform that can be exploited to administer this enzyme by decreasing its exposure to proteases and increasing its apparent half-life. Polymerosomes (PL) are interesting routes which by its intrinsically vesicular nanostructure could encapsulate the ASNase in its aqueous core and by the presence of a polymeric membrane, being more robust than the liposomes. Thus, in this work it was intended to develop PL for ASNase encapsulation as an alternative to existing formulations of this biopharmaceutical. PL of PEG-PLA, PMPC-PDPA, PEG-PDPA and Pluronic® L-21 were developed. It was studied the copolymers composition (i.e. hydrophilic fraction, responsiveness to external factors such as pH and temperature), PL design (i.e. polymer film hydration, pH change and temperature) and PL characterization (i.e. size, polydispersity index - PDI, membrane thickness, formation of excessive polymer bulk, micelles production). A suitable experimental planning for ASNase encapsulation (i.e. direct hydration of the polymeric film and encapsulation by electroporation, self-aggregation with encapsulation by pH or temperature change) was also performed. For the PL prepared with PEG-PLA, the extrusion resulted in narrower size distribution corresponding to the PDI values of 0.345, 0.144 and 0.081 for PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180, respectively. It has been shown that copolymers with lower hydrophobic fraction result in higher encapsulation efficiency for proteins, since they have larger aqueous volumes. With PMPC25-PDPA72 PL, it was possible to encapsulate three units of ASNase per vesicles through electroporation or pH change. In the first method, tubules were formed and in the latter one the micelles were not completely removed. For PEO100-PDPA80 PL, large aggregates remained after purification leading to a high PDI value, nevertheless no tubule formation was observed, since the pH change for this copolymer resulted in greater loss of copolymers as a precipitated polymer bulk. For the Pluronic® L-121 triblock copolymer PL, it was observed that the vesicles were stable for one week at room temperature, contrary to what was described in the literature. These PLs were prepared by film hydration method and ASNase encapsulation was performed by electroporation, nonetheless the protein was not detected within the vesicles. It is attributed the non-encapsulation to the organization of the Pluronic® L-121 bilayer without defined conformation of the polymer chains, making it difficult to reorganize the hydrophilic block in the internal portion of the pore during electroporation. By temperature change, about 5% of ASNase was encapsulated and the method resulted in complete recovery of enzyme activity. In conclusion, several PLs with a vast range of differential nanostructural characteristics were obtained according to the copolymers used for ASNase loading.
|
9 |
Desenvolvimento de vesículas poliméricas de poli(etileno glicol)-b-poli(ε-caprolactona) (PEG-PCL) para veiculação de L-asparaginase / Development of polyethylene glycol-polycaprolactone polymer vesicles for L-AsparaginaseJuliana de Almeida Pachioni Vasconcelos 21 June 2018 (has links)
A L-Asparaginase (ASNase) é um importante agente quimioterapêutico utilizado para o tratamento da leucemia linfoblástica aguda (ALL) há mais de 40 anos. No entanto, devido à origem biológica da ASNase, enzima produzida por Escherichia coli, problemas como a imunogenicidade e baixa meia vida-plasmática devem ser considerados. Com o objetivo de minimizar essas desvantagens, várias ASNases homólogas bem como formulações de ASNase de E. coli foram investigadas. Nenhuma das formulações desenvolvidas, entretanto, foi capaz de resolver definitivamente esses problemas associados à sua origem. Nesse sentido, considerando os recentes avanços na ciência de polímeros com a possibilidade do obtenção de vesículas poliméricas usando copolímeros, este trabalho concentrou-se no desenvolvimento de polimerossomos de poli(etileno glicol)-b-poli(ε-caprolactona) (PEG-PCL) para encapsular a ASNase. Diversas condições experimentais foram investigadas e, ao final, os polimerossomos foram produzidos pela técnica de hidratação do filme polimérico utilizando a centrifugação como técnica de pós-filme para remoção de copolímero precipitado, produzindo assim vesículas polímericas de 120 a 200nm com PDI de aproximadamente 0,250. A eficiência de encapsulação da ASNase, utilizando as metodologias de centrifugação ou cromatografia de exclusão molecular, revelou taxas de encapsulação de 20-25% e 1 a 7%, repectivamente. Esses resultados apontam a importância de se determinar a eficiência de encapsulação por cromatografia de exclusão molecular ou método direto no caso de nanoestruturas auto-agregadas formadas por copolímeros, devido a valores superestimados com o emprego da centrifugação. Ainda que estudos complementares se façam necessários para liberação da enzima encapsulada ou penetração da L-asparagina nas vesículas, nossos resultados demonstram o potencial de polimerossomos para veiculação de ASNase, bem como de outras proteínas terapêuticas. / L-Asparaginase (ASNase) is an important chemotherapeutic agent used for the treatment of acute lymphoblastic leukemia (ALL) for more than 40 years. However, due to the biological origin of ASNase (produced by Escherichia coli) some drawbacks such as immunogenicity and low plasma half life are present. In order to minimize the disadvantages, several ASNases proteoforms and formulations of E. coli ASNase were investigated. However, none of this formulations completely solved the main drawbacks of ASNase. In this sense, considering the recents advances in polymers science with the possibility to develop polymeric vesicles using copolymers, this work aimed at the development of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) vesicles to encapsulate ASNase. Different experimental conditions were investigated and, the final polymersomes formulation was prepared by film hydratation using centrifugation as a post-film technique to remove the bulky coplymer. Polymeric vesicles of 120 to 200nm with PDI of approximately, 0.250 were obtained. The encapsulation efficiency of ASNase was determined indirectly by centrifugation and directly by size exclusion chromatography, resulting in encapsulation rates of 20-25% and 1 to 7%, respectively. These results indicate the importance of determining the efficiency of encapsulation by size exclusion chromatography or direct method in the case of self-aggregated nanostructures formed by copolymers, due to values overestimated with the use of centrifugation. Our results point to the potential of polymersomes for ASNase delivery, as well as other therapeutic proteins. Nonetheless, complimentary studies are still necessary for ASNase release or L-asparagine penetration into the vesicles.
|
10 |
Desenvolvimento e caracterização de polimerossomos para veiculação de L-asparaginase / Development and characterization of polymersomes for the release of L-asparaginaseApolinário, Alexsandra Conceição 03 October 2018 (has links)
A enzima L-Asparaginase (ASNase) é um biofámaco utilizado no tratamento da leucemia linfoblástica aguda, no entanto, a evolução da produção da ASNase como um medicamento desde o final da década de 1970 resultou em apenas quatro alternativas disponíveis no mercado farmacêutico, com relatos de graves reações imunogênicas e toxicidade. Desse modo, a nanotecnologia é uma plataforma que pode ser explorada para administração dessa enzima diminuindo a exposição da mesma a proteases e aumentando a sua meia-vida aparente. Os polimerossomos (PL) são opções que pela nanoestrutura vesicular poderiam encapsular a ASNase em seu core aquoso e pela presença de uma membrana polimérica, são mais robustos que os lipossomos. Assim, neste trabalho objetivou-se desenvolver PL para encapsulação da ASNase como uma alternativa às formulações deste biofármaco existentes. Foram desenvolvidos PL de PEG-PLA, PMPC-PDPA, PEG-PDPA e Pluronic® L-21. Foram estudados fatores relacionados à composição dos copolímeros (fração hidrofílica, responsividade a fatores externos tais como pH e temperatura) e métodos de elaboração (hidratação do filme polimérico, troca de pH e temperatura) bem como foi feita a caracterização dos PL obtidos (tamanho, índice de polidispersão, espessura de membrana, formação de excessivo bulk polimérico, obtenção de micelas). Também foi feito um planejamento racional para encapsulação da ASNase (hidratação direta do filme polimérico e encapsulação por eletroporação, autoagregação com encapsulação por troca de pH ou de temperatura). Para os PL preparados com PEG-PLA, a extrusão resultou em distribuição de tamanhos mais estreitos correspondentes aos valores de PDI de 0,345, 0,144 e 0,081 para PEG45-PLA69, PEG114-PLA153 e PEG114-PLA180, respectivamente. Foi demonstrado que copolímeros com menor fração hidrofóbica resultam em maior eficiência de encapsulação para proteínas, já que possuem volumes aquosos maiores. Com o PMPC25-PDPA72 foi possível encapsular em média três unidades de ASNase por vesículas através da eletroporação ou troca de pH, sendo que no primeiro método houve formação de túbulos e no último método as micelas não foram completamente removidas. Para PEG100-PDPA80, grandes agregados permaneceram após a purificação levando a um PDI alto, mas não foi observada a formação de túbulos, já a troca de pH para este copolímero resultou em maior perda de copolímeros como bulk polimérico precipitado. Para o copolimero tribloco Pluronic® L-121, foi observado que as vesículas eram estáveis durante uma semana à temperatura ambiente, contrariando o que era descrito na literatura. Nesses sistemas, quando preparados por hidratação do filme, a encapsulação da ASNase foi realizada por eletroporação mas a proteína não foi detectada dentro das vesículas. Atribuímos a não-encapsulação à organização da bicamada Pluronic® L-121 sem conformação definida das cadeias poliméricas, dificultando a reorganização do bloco hidrofílico na porção interna do poro durante eletroporação. Por troca de temperatura, cerca de 5 % de ASNase foi encapsulada e o método resultou em total recuperação da atividade da enzima. Desse modo foram obtidos diferentes PL com diferentes características nanoestruturais de acordo com os copolímeros utilizados para carreamento da ASNase. / The enzyme L-Asparaginase (ASNase) is a biopharmaceutical used in the treatment of acute lymphoblastic leukemia, still the industrial production of ASNase as a marketable drug since the late 1970s has resulted in only four alternatives available in the pharmaceutical market, with reports of severe immunogenic reactions and toxicity. In this sense, nanotechnology is a platform that can be exploited to administer this enzyme by decreasing its exposure to proteases and increasing its apparent half-life. Polymerosomes (PL) are interesting routes which by its intrinsically vesicular nanostructure could encapsulate the ASNase in its aqueous core and by the presence of a polymeric membrane, being more robust than the liposomes. Thus, in this work it was intended to develop PL for ASNase encapsulation as an alternative to existing formulations of this biopharmaceutical. PL of PEG-PLA, PMPC-PDPA, PEG-PDPA and Pluronic® L-21 were developed. It was studied the copolymers composition (i.e. hydrophilic fraction, responsiveness to external factors such as pH and temperature), PL design (i.e. polymer film hydration, pH change and temperature) and PL characterization (i.e. size, polydispersity index - PDI, membrane thickness, formation of excessive polymer bulk, micelles production). A suitable experimental planning for ASNase encapsulation (i.e. direct hydration of the polymeric film and encapsulation by electroporation, self-aggregation with encapsulation by pH or temperature change) was also performed. For the PL prepared with PEG-PLA, the extrusion resulted in narrower size distribution corresponding to the PDI values of 0.345, 0.144 and 0.081 for PEG45-PLA69, PEG114-PLA153 and PEG114-PLA180, respectively. It has been shown that copolymers with lower hydrophobic fraction result in higher encapsulation efficiency for proteins, since they have larger aqueous volumes. With PMPC25-PDPA72 PL, it was possible to encapsulate three units of ASNase per vesicles through electroporation or pH change. In the first method, tubules were formed and in the latter one the micelles were not completely removed. For PEO100-PDPA80 PL, large aggregates remained after purification leading to a high PDI value, nevertheless no tubule formation was observed, since the pH change for this copolymer resulted in greater loss of copolymers as a precipitated polymer bulk. For the Pluronic® L-121 triblock copolymer PL, it was observed that the vesicles were stable for one week at room temperature, contrary to what was described in the literature. These PLs were prepared by film hydration method and ASNase encapsulation was performed by electroporation, nonetheless the protein was not detected within the vesicles. It is attributed the non-encapsulation to the organization of the Pluronic® L-121 bilayer without defined conformation of the polymer chains, making it difficult to reorganize the hydrophilic block in the internal portion of the pore during electroporation. By temperature change, about 5% of ASNase was encapsulated and the method resulted in complete recovery of enzyme activity. In conclusion, several PLs with a vast range of differential nanostructural characteristics were obtained according to the copolymers used for ASNase loading.
|
Page generated in 0.0752 seconds