• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The multifarious self-assembly of triblock copolymers : from multi-responsive polymers and multi-compartment micelles

Skrabania, Katja January 2008 (has links)
New ABC triblock copolymers were synthesized by controlled free-radical polymerization via Reversible Addition-Fragmentation chain Transfer (RAFT). Compared to amphiphilic diblock copolymers, the prepared materials formed more complex self-assembled structures in water due to three different functional units. Two strategies were followed: The first approach relied on double-thermoresponsive triblock copolymers exhibiting Lower Critical Solution Temperature (LCST) behavior in water. While the first phase transition triggers the self-assembly of triblock copolymers upon heating, the second one allows to modify the self-assembled state. The stepwise self-assembly was followed by turbidimetry, dynamic light scattering (DLS) and 1H NMR spectroscopy as these methods reflect the behavior on the macroscopic, mesoscopic and molecular scale. Although the first phase transition could be easily monitored due to the onset of self-assembly, it was difficult to identify the second phase transition unambiguously as the changes are either marginal or coincide with the slow response of the self-assembled system to relatively fast changes of temperature. The second approach towards advanced polymeric micelles exploited the thermodynamic incompatibility of “triphilic” block copolymers – namely polymers bearing a hydrophilic, a lipophilic and a fluorophilic block – as the driving force for self-assembly in water. The self-assembly of these polymers in water produced polymeric micelles comprising a hydrophilic corona and a microphase-separated micellar core with lipophilic and fluorophilic domains – so called multi-compartment micelles. The association of triblock copolymers in water was studied by 1H NMR spectroscopy, DLS and cryogenic transmission electron microscopy (cryo-TEM). Direct imaging of the polymeric micelles in solution by cryo-TEM revealed different morphologies depending on the block sequence and the preparation conditions. While polymers with the sequence hydrophilic-lipophilic-fluorophilic built core-shell-corona micelles with the core being the fluorinated compartment, block copolymers with the hydrophilic block in the middle formed spherical micelles where single or multiple fluorinated domains “float” as disks on the surface of the lipophilic core. Increasing the temperature during micelle preparation or annealing of the aqueous solutions after preparation at higher temperatures induced occasionally a change of the micelle morphology or the particle size distribution. By RAFT polymerization not only the desired polymeric architectures could be realized, but the technique provided in addition a precious tool for molar mass characterization. The thiocarbonylthio moieties, which are present at the chain ends of polymers prepared by RAFT, absorb light in the UV and visible range and were employed for end-group analysis by UV-vis spectroscopy. A variety of dithiobenzoate and trithiocarbonate RAFT agents with differently substituted initiating R groups were synthesized. The investigation of their absorption characteristics showed that the intensity of the absorptions depends sensitively on the substitution pattern next to the thiocarbonylthio moiety and on the solvent polarity. According to these results, the conditions for a reliable and convenient end-group analysis by UV-vis spectroscopy were optimized. As end-group analysis by UV-vis spectroscopy is insensitive to the potential association of polymers in solution, it was advantageously exploited for the molar mass characterization of the prepared amphiphilic block copolymers. / Die Arbeit widmet sich der Synthese von neuen amphiphilen ternären "ABC" Block-Copolymeren und der Untersuchung ihrer Selbstorganisation zu mizellaren Überstrukturen in wässriger Lösung. Die Block-Copolymere wurden durch kontrollierte radikalische Polymerisation mittels des sogenannten „RAFT“ Prozesses (radical addition fragmentation chain transfer) hergestellt. Neben der Realisierung der gewünschten Polymerarchitekturen erlaubte es die Methode, die Molmassen der Polymere durch Endgruppenanalyse zu bestimmen. Die Kettenenden der Polymere tragen infolge des Polymerisationsmechanismus’ definierte Funktionalitäten, welche UV- und sichtbares Licht absorbieren und somit durch UV-vis-Spektroskopie quantifizierbar sind. Das Absorptionsverhalten der Endgruppen wurde untersucht und die UV-vis-Endgruppenanalyse optimiert. Es zeigte sich, dass die Vorteile der Methode ihre generelle Anwendbarkeit und ihre Unempfindlichkeit gegenüber der Assoziation von Polymeren in Lösung sind. Aufgrund ihrer drei unterschiedlichen Blöcke bilden die synthetisierten ABC Triblockcopolymere komplexere selbstorganisierte Strukturen als die bisher üblichen Diblockcopolymere. Die Triebkraft für ihre Selbstorganisation in wässriger Lösung ist im wesentlichen der hydrophobe Effekt. Es wurden zwei unterschiedliche Ansätze verfolgt: Zum einen wurden doppelt-schaltbare Triblockcopolymere hergestellt, von denen ein Block permanent wasserlöslich ist, während die anderen Blöcke jeweils eine untere Entmischungstemperatur in wässriger Lösung aufweisen. Diese Blöcke „schalten“ beim Erwärmen von hydrophil auf hydrophob. Oberhalb des ersten Phasenübergangs - bei der niedrigeren Entmischungstemperatur - assoziieren die Makromoleküle und bilden Polymermizellen im Nanometerbereich. Beim weiteren Erwärmen „schaltet“ auch der zweite Block und modifiziert den selbstorganisierten Zustand, während der permanent wasserlösliche Block für die Stabilisierung der Aggregate sorgt. Die Assoziation der Block-Copolymere ist nach Abkühlen der wässrigen Lösung vollständig reversibel. Die stufenweise Selbstorganisation wurde mit Hilfe von Turbidimetrie, Dynamischer Lichtstreuung (DLS) und 1H-NMR-Spektroskopie untersucht, da diese Methoden das Verhalten auf der makroskopischen, mesoskopischen und molekularen Skala widerspiegeln. Obwohl der einsetzende Selbstorganisationsprozess problemlos zu detektieren war, konnten die Veränderungen infolge des zweiten Phasenübergang nicht immer eindeutig identifiziert werden, da sie zum Teil mit der langsamen Reaktion des Systems auf relativ schnelle Temperaturänderungen zusammenfielen. Außerdem hängt die Aggregatbildung nicht nur sensibel von der detaillierten Polymerarchitektur ab, sondern unterliegt auch teilweise einer kinetischen Kontrolle. Der zweite Ansatz zu komplexeren Polymermizellen basierte auf der Inkompatibilität „triphiler“ Blockcopolymere als Triebkraft für die Selbstorganisation. Das heißt, die Block-Copolymere bestehen aus einem hydrophilen, einen lipophilen und einen fluorophilen (Fluorkohlenwasserstoff-liebenden) Teil, die jeweils miteinander unverträglich sind. Die Polymere assoziierten in Wasser zu Polymermizellen mit einer hydrophilen Korona und einem unterstrukturierten Mizellkern mit separaten Kohlenwasserstoff- und Fluorkohlenwasserstoff-Domänen – sogenannten Multi-Kompartiment-Mizellen. Die Assoziation der Triblock-Copolymere wurde mit 1H-NMR-Spektroskopie, DLS und cryogener Transmissionselektronenmikroskopie (cryo-TEM) untersucht. Die unmittelbare Abbildung der Polymermizellen in Lösung mittels cryo-TEM enthüllte unterschiedliche Morphologien in Abhängigkeit von der Blocksequenz und den Präparationsbedingungen. Während Polymere mit der Blocksequenz hydrophil-lipophil-fluorophil Kern-Schale-Korona-Mizellen mit der Fluor-Domäne als Kern bildeten, wurde eine neue, unerwartete Mizellmorphologie für die Polymere mit dem hydrophilen Block in der Mitte gefunden: Einzelne oder mehrere Fluordomänen “schwimmen” als Scheiben auf dem lipophilen Kern. Die beobachteten Morphologien sind weitgehend stabil, unterliegen aber ebenfalls - zumindest teilweise - einer kinetischen Kontrolle. So führten erhöhte Temperaturen während der Mizellpräparation gelegentlich zu einer Veränderung der Mizellmorphologie oder Partikelgröße.
2

Characterization of nano-phase segregation in multicompartment micelle and its applications: Computational approaches

Chun, Byeongjae 07 January 2016 (has links)
Computational methodologies were employed to study a supramolecular micellar structure and its application, nanoreactor. This task was done through rigorous scale-up procedure using both atomistic and mesoscopic simulations. Primarily, density functional theory (DFT) calculation was used to characterize the smallest unit of complex molecules in the multicomponent mixture system. The following step involved transferring the information achieved by DFT calculation to larger scale simulation, such as molecular dynamics (MD) simulation. Lastly, based on the atomistic simulation results, we performed a series of dissipative particle dynamics (DPD) simulations to study a full body of polymeric multicompartment micelle. In the course of research, we built a systematic procedure to minimize the complexity of computation and efficiently characterize macromolecular structures and its application.
3

Mechanisms of excitability in the central and peripheral nervous systems : Implications for epilepsy and chronic pain

Tigerholm, Jenny January 2012 (has links)
The work in this thesis concerns mechanisms of excitability of neurons. Specifically, it deals with how neurons respond to input, and how their response is controlled by ion channels and other active components of the neuron. I have studied excitability in two systems of the nervous system, the hippocampus which is responsible for memory and spatial navigation, and the peripheral C–fibre which is responsible for sensing and conducting sensory information to the spinal cord. Within the work, I have studied the role of excitability mechanisms in normal function and in pathological conditions. For hippocampus the normal function includes changes in excitability linked to learning and memory. However, it also is intimately linked to pathological increases in excitability observed in epilepsy. In C–fibres, excitability controls sensitivity to responses to stimuli. When this response becomes enhanced, this can lead to pain. I have used computational modelling as a tool for studying hyperexcitability in neurons in the central nervous system in order to address mechanisms of epileptogenesis. Epilepsy is a brain disorder in which a subject has repeated seizures (convulsions) over time. Seizures are characterized by increased and highly synchronized neural activity. Therefore, mechanisms that regulate synchronized neural activity are crucial for the understanding of epileptogenesis. Such mechanisms must differentiate between synchronized and semi synchronized synaptic input. The candidate I propose for such a mechanism is the fast outward current generated by the A-type potassium channel (KA). Additionally, I have studied the propagation of action potentials in peripheral axons, denoted C–fibres. These C–fibres mediate information about harmful peripheral stimuli from limbs and organs to the central nervous system and are thereby linked to pathological pain. If a C–fibre is activated repeatedly, the excitability is altered and the mechanisms for this alteration are unknown. By computational modelling, I have proposed mechanisms which can explain this alteration in excitability. In summary, in my work I have studied roles of particular ion channels in excitability related to functions in the nervous system. Using computational modelling, I have been able to relate specific properties of ion channels to functions of the nervous system such as sensing and learning, and in particular studied the implications of mechanisms of excitability changes in diseases. / <p>QC 20102423</p>
4

Modeling and control of a pressure-limited respirator and lung mechanics

Li, Hancao 05 April 2013 (has links)
The lungs are particularly vulnerable to acute, critical illness. Respiratory failure can result not only from primary lung pathology, such as pneumonia, but also as a secondary consequence of heart failure or inflammatory illness, such as sepsis or trauma. When this occurs, it is essential to support patients with mechanical ventilation while the fundamental disease process is addressed. The goal of mechanical ventilation is to ensure adequate ventilation, which involves a magnitude of gas exchange that leads to the desired blood level of carbon dioxide, and adequate oxygenation that ensures organ function. Achieving these goals is complicated by the fact that mechanical ventilation can actually cause acute lung injury, either by inflating the lungs to excessive volumes or by using excessive pressures to inflate the lungs. Thus, the challenge to mechanical ventilation is to produce the desired blood levels of carbon dioxide and oxygen without causing further acute lung injury. In this research, we develop an analysis and control synthesis framework for a pressure-limited respirator and lung mechanics system using compartment models. Specifically, a general mathematical model is developed for the dynamic behavior of a multicompartment respiratory system. Then, based on this multicompartment model, an optimal respiratory pattern is characterized using classical calculus of variations minimization techniques for inspiratory and expiratory breathing cycles. Furthermore, model predictive controller frameworks are designed to track the given optimal respiratory air flow pattern while satisfying control input amplitude and rate constrains.
5

Vésicules polymères biomimétiques : vers un biomimétisme cellulaire structurel et fonctionnel / Biomimetic polymer vesicles : towards structural and functional cell biomimicry

Peyret, Ariane 24 October 2017 (has links)
Les copolymères à blocs amphiphiles peuvent s’auto-assembler sous forme de vésicules,appelées polymersomes. Ces vésicules ont été développées et étudiées depuis de nombreusesannées notamment pour l’encapsulation et la délivrance contrôlée de médicaments. Depuisquelques temps, elles connaissent des applications dans le domaine du biomimétisme cellulaire.Plus robustes que leurs analogues lipidiques (liposomes), les avantages à utiliser lespolymersomes comme mimes synthétiques de cellules biologiques ne sont plus à démontrer.Ainsi, des structures compartimentées à base de polymères ont été développés comme mimesstructurels de cellules. Ces systèmes ont été utilisés comme bioréacteurs, avec la réalisation deréactions chimiques ou enzymatiques en cascade en milieu confiné. Toutefois, l’un desobstacles qu’il reste à franchir est de trouver des moyens simples et efficaces pour déclencherla réaction au sein de ces systèmes. C’est dans ce contexte que s’inscrivent les travaux de cettethèse. Une membrane synthétique asymétrique à base de lipide et polymère a été développée etla méthode d’émulsion-centrifugation a été utilisée pour produire des systèmes compartimentésbiomimétiques. De plus, deux approches différentes ont été suivies pour provoquer la libérationcontrôlée d’espèces encapsulées, l’une utilisant la température et l’autre la lumière. Enfin, desétudes de co-encapsulation de cellules synthétiques (polymersomes) et biologiques au sein demilieux 3D ont été réalisées dans le but d’évaluer leur compatibilité et la possibilité de les cocultiver. / Amphiphilic block copolymers can self-assemble into vesicles, also called polymersomes.These vesicles have been developed and studied for many years especially in the field of drugloading and controlled release. More recently, their use as cell mimics have attracted a lot ofattention, mainly because polymersomes exhibit many advantages in contrast to their lipidicanalogues (liposomes). In such, compartmentalized polymer systems have especially beendeveloped as structural mimics of cells. These systems have found applications as bioreactorsthat can confine cascade chemical or enzymatic reactions. However, a major goal that stillremains to achieve is to find ways to trigger the beginning of these chemical reactions insidethe compartmentalized structures. The work carried out during this PhD thesis was actually totackle this challenge. A synthetic asymmetric lipid – polymer membrane, that mimics themembrane of biological cells was developed and the emulsion-centrifugation protocol wasfollowed to prepare biomimetic compartmentalized structures. In addition, two different waysto control the independent release of multiple species from individual compartments weredeveloped, based on temperature or light activation. Lastly, co-encapsulation of synthetic cells(polymersomes) and biological cells were performed in 3D media with the aim to study theircompatibility for co-culture experiments.
6

The neural basis of a cognitive map

Grieves, Roderick McKinlay January 2015 (has links)
It has been proposed that as animals explore their environment they build and maintain a cognitive map, an internal representation of their surroundings (Tolman, 1948). We tested this hypothesis using a task designed to assess the ability of rats to make a spatial inference (take a novel shortcut)(Roberts et al., 2007). Our findings suggest that rats are unable to make a spontaneous spatial inference. Furthermore, they bear similarities to experiments which have been similarly unable to replicate or support Tolman’s (1948) findings. An inability to take novel shortcuts suggests that rats do not possess a cognitive map (Bennett, 1996). However, we found evidence of alternative learning strategies, such as latent learning (Tolman & Honzik, 1930b) , which suggest that rats may still be building such a representation, although it does not appear they are able to utilise this information to make complex spatial computations. Neurons found in the hippocampus show remarkable spatial modulation of their firing rate and have been suggested as a possible neural substrate for a cognitive map (O'Keefe & Nadel, 1978). However, the firing of these place cells often appears to be modulated by features of an animal’s behaviour (Ainge, Tamosiunaite, et al., 2007; Wood, Dudchenko, Robitsek, & Eichenbaum, 2000). For instance, previous experiments have demonstrated that the firing rate of place fields in the start box of some mazes are predictive of the animal’s final destination (Ainge, Tamosiunaite, et al., 2007; Ferbinteanu & Shapiro, 2003). We sought to understand whether this prospective firing is in fact related to the goal the rat is planning to navigate to or the route the rat is planning to take. Our results provide strong evidence for the latter, suggesting that rats may not be aware of the location of specific goals and may not be aware of their environment in the form of a contiguous map. However, we also found behavioural evidence that rats are aware of specific goal locations, suggesting that place cells in the hippocampus may not be responsible for this representation and that it may reside elsewhere (Hok, Chah, Save, & Poucet, 2013). Unlike their typical activity in an open field, place cells often have multiple place fields in geometrically similar areas of a multicompartment environment (Derdikman et al., 2009; Spiers et al., 2013). For example, Spiers et al. (2013) found that in an environment composed of four parallel compartments, place cells often fired similarly in multiple compartments, despite the active movement of the rat between them. We were able to replicate this phenomenon, furthermore, we were also able to show that if the compartments are arranged in a radial configuration this repetitive firing does not occur as frequently. We suggest that this place field repetition is driven by inputs from Boundary Vector Cells (BVCs) in neighbouring brain regions which are in turn greatly modulated by inputs from the head direction system. This is supported by a novel BVC model of place cell firing which predicts our observed results accurately. If place cells form the neural basis of a cognitive map one would predict spatial learning to be difficult in an environment where repetitive firing is observed frequently (Spiers et al., 2013). We tested this hypothesis by training animals on an odour discrimination task in the maze environments described above. We found that rats trained in the parallel version of the task were significantly impaired when compared to the radial version. These results support the hypothesis that place cells form the neural basis of a cognitive map; in environments where it is difficult to discriminate compartments based on the firing of place cells, rats find it similarly difficult to discriminate these compartments as shown by their behaviour. The experiments reported here are discussed in terms of a cognitive map, the likelihood that such a construct exists and the possibility that place cells form the neural basis of such a representation. Although the results of our experiments could be interpreted as evidence that animals do not possess a cognitive map, ultimately they suggest that animals do have a cognitive map and that place cells form a more than adequate substrate for this representation.

Page generated in 0.0905 seconds