Spelling suggestions: "subject:"polymers""
11 |
Polymeric Multicompartmentalized Systems Mimicking Artificial Cells for Controllable Multiple Enzymatic Cascade ReactionsLiu, Xiaoling 14 November 2017 (has links) (PDF)
Engineering artificial cells is currently an emerging area of research that involves constructing mimics of biological cells. These biomimetic cellular systems hold tremendous promise for the different biomedical applications (diagnostics, therapy, tissue engineering, gene transfection, bioactive coatings) as well as aspects of synthetic biology. A key architectural principle of the cell is a multicompartmentalized assembly, which is one of the features of biological cells that enable the performance of multiple complex biochemical reactions within confined environments. For this purpose, this study demonstrates novel artificial cells, not only presenting organelle mimics but also incorporating various stimuli for regulating enzymatic cascade reactions within the artificial cell and for controlled simultaneous and/or subsequent release of the encapsulated (therapeutic) molecules.
To successfully fabricate the multifunctional polymeric multicompartmentalized systems as artificial cells aimed for, in the first step a hollow capsule as biomimetic cellular membrane was developed to simulate a key characteristic of functional artificial cells for the selective uptake and release of (bio)molecules and particles for intra- and intercellular signaling processes. Herein using LbL technique which involved alternate deposition of oppositely charged polyelectrolytes on silica template via electrostatic interaction, the pH and temperature dual-responsive and photo-crosslinked hollow capsule was fabricated and they can be used for the subsequent post-encapsulation process of protein-like macromolecules (≤ 11 nm) and their controllable release triggered by external stimuli for mimicking the controllable bio-inspired functions of cell membranes. The reversible temperature and pH dual-response ability of the hollow capsules has been analyzed. The uptake and release properties of the resulting hollow capsules with different degree of photo-crosslinking for cargos have been further investigated at various temperatures (25, 37 or 45°C) and pH (5.5 or 7.4) of the solution.
Next, the design of the polymersomal subcompartmens as organelle mimics, which divide the interior of the multicompartmentalized systems into subcompartments and can stably encapsulate fragile hydrophobic and hydrophilic cargo, e.g., enzymes in order to conduct encapsulated catalysis-resembling cell organelles, was also an important subject. The fabrication of these subcompartments was starting with the synthesis of suitably end-group block copolymers to realize the enzyme-loaded, multifunctional, pH-responsive, photo-crosslinked and post-labelled polymersomes decorated with adamantane groups. The pH sensitivity and various enzymatic reactions of the established multifunctional Ada-polymersomes have been investigated.
Based on the above concepts, a bottom-up approach was developed to assemble a structural and functional eukaryotic cell mimics, including “membrane-associated” multicompartmentalized system (MS1) and “free-floating” multicompartmentalized system (MS2), by loading pH-sensitive Ada-polymersomes inside the multifunctional cell membrane. The creation of these multicompartmentalized systems was based on the assembly of enzyme-loaded Ada-polymersomes as organelle mimics onto sacrificial particle templates by host-guest interaction, followed by the LbL deposition of temperature-responsive and photo-crosslinkable PMA(β-CD)/[PAH/PNMD]3 multilayers and outer protective capping PAH/PMA(PEG) bilayer as biomimetic cellular membrane. Upon photo-crosslinking the polymer biomimetic membrane and dissolution of the particle templates, multicompartmentalized systems were obtained. Spatial position of the subcompartments can be controlled using non-covalent host-guest concept, which yielded multicompartmentalized systems containing “membrane-associated” and “free-floating” subunits. Moreover, the metabolism mimicry of multicompartmentalized systems by performing multiple successive two-enzyme cascade reactions in the cells and the multiple parallel reactions by using a third enzyme for deactivating the reaction product and interfering the cascade reaction have been investigated.
In conclusion, these multicompartmentalized systems, combining the advantages of both pH-responsive Ada-polymersomes as organelle mimics and multifunctional hollow capsule as biomimetic cellular membrane, present new opportunities for the development of functional cell mimics. The presented studies highlight crucial aspects for the successful applications of such cell mimics for diagnostics, tissue engineering, as nanoreactors, as carriers for multiple drug delivery with controlled release profiles, or as therapeutic artificial cells.
|
12 |
Multifunctional and Stimuli-Responsive Polymersomes for Biomedical ApplicationsIyisan, Banu 16 January 2017 (has links) (PDF)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers.
The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug.
In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.
|
13 |
Multifunctional and Stimuli-Responsive Polymersomes for Biomedical ApplicationsIyisan, Banu 18 November 2016 (has links)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers.
The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug.
In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.
|
14 |
Polymeric Multicompartmentalized Systems Mimicking Artificial Cells for Controllable Multiple Enzymatic Cascade ReactionsLiu, Xiaoling 07 November 2017 (has links)
Engineering artificial cells is currently an emerging area of research that involves constructing mimics of biological cells. These biomimetic cellular systems hold tremendous promise for the different biomedical applications (diagnostics, therapy, tissue engineering, gene transfection, bioactive coatings) as well as aspects of synthetic biology. A key architectural principle of the cell is a multicompartmentalized assembly, which is one of the features of biological cells that enable the performance of multiple complex biochemical reactions within confined environments. For this purpose, this study demonstrates novel artificial cells, not only presenting organelle mimics but also incorporating various stimuli for regulating enzymatic cascade reactions within the artificial cell and for controlled simultaneous and/or subsequent release of the encapsulated (therapeutic) molecules.
To successfully fabricate the multifunctional polymeric multicompartmentalized systems as artificial cells aimed for, in the first step a hollow capsule as biomimetic cellular membrane was developed to simulate a key characteristic of functional artificial cells for the selective uptake and release of (bio)molecules and particles for intra- and intercellular signaling processes. Herein using LbL technique which involved alternate deposition of oppositely charged polyelectrolytes on silica template via electrostatic interaction, the pH and temperature dual-responsive and photo-crosslinked hollow capsule was fabricated and they can be used for the subsequent post-encapsulation process of protein-like macromolecules (≤ 11 nm) and their controllable release triggered by external stimuli for mimicking the controllable bio-inspired functions of cell membranes. The reversible temperature and pH dual-response ability of the hollow capsules has been analyzed. The uptake and release properties of the resulting hollow capsules with different degree of photo-crosslinking for cargos have been further investigated at various temperatures (25, 37 or 45°C) and pH (5.5 or 7.4) of the solution.
Next, the design of the polymersomal subcompartmens as organelle mimics, which divide the interior of the multicompartmentalized systems into subcompartments and can stably encapsulate fragile hydrophobic and hydrophilic cargo, e.g., enzymes in order to conduct encapsulated catalysis-resembling cell organelles, was also an important subject. The fabrication of these subcompartments was starting with the synthesis of suitably end-group block copolymers to realize the enzyme-loaded, multifunctional, pH-responsive, photo-crosslinked and post-labelled polymersomes decorated with adamantane groups. The pH sensitivity and various enzymatic reactions of the established multifunctional Ada-polymersomes have been investigated.
Based on the above concepts, a bottom-up approach was developed to assemble a structural and functional eukaryotic cell mimics, including “membrane-associated” multicompartmentalized system (MS1) and “free-floating” multicompartmentalized system (MS2), by loading pH-sensitive Ada-polymersomes inside the multifunctional cell membrane. The creation of these multicompartmentalized systems was based on the assembly of enzyme-loaded Ada-polymersomes as organelle mimics onto sacrificial particle templates by host-guest interaction, followed by the LbL deposition of temperature-responsive and photo-crosslinkable PMA(β-CD)/[PAH/PNMD]3 multilayers and outer protective capping PAH/PMA(PEG) bilayer as biomimetic cellular membrane. Upon photo-crosslinking the polymer biomimetic membrane and dissolution of the particle templates, multicompartmentalized systems were obtained. Spatial position of the subcompartments can be controlled using non-covalent host-guest concept, which yielded multicompartmentalized systems containing “membrane-associated” and “free-floating” subunits. Moreover, the metabolism mimicry of multicompartmentalized systems by performing multiple successive two-enzyme cascade reactions in the cells and the multiple parallel reactions by using a third enzyme for deactivating the reaction product and interfering the cascade reaction have been investigated.
In conclusion, these multicompartmentalized systems, combining the advantages of both pH-responsive Ada-polymersomes as organelle mimics and multifunctional hollow capsule as biomimetic cellular membrane, present new opportunities for the development of functional cell mimics. The presented studies highlight crucial aspects for the successful applications of such cell mimics for diagnostics, tissue engineering, as nanoreactors, as carriers for multiple drug delivery with controlled release profiles, or as therapeutic artificial cells.
|
15 |
Preparation and Characterization of Polymersomes for Nose-to-Brain Delivery of Combination Therapeutics in Neuroinflammation TreatmentManickavasagam, Dharani 25 April 2019 (has links)
No description available.
|
16 |
Engineering Cellular Hemoglobin-Based Oxygen Carriers For Use In Transfusion MedicineRameez, Shahid 16 December 2011 (has links)
No description available.
|
17 |
Mucus-penetrating polymersomes as a potential lung drug delivery system: preparation, in vitro characterization, and biodistribution tests / Mucus-penetrating polymersomes as a potential lung drug delivery system: preparation, in vitro characterization, and biodistribution testsBeatriz Nogueira Messias de Miranda 28 September 2018 (has links)
O muco protege o corpo humano de partículas externas, mas também representa uma barreira para a entrega de controlada de medicamentos através de nanocarregadores. Para ultrapassar a barreira do muco e impedir mucoadesão, nanopartículas sólidas são normalmente revestidas com polímeros inertes, tais como o polietileno glicol (PEG). No entanto, trata-se de um procedimento relativamente complexa. Nesta tese, estudamos métodos para fabricar nanocarreadores com uma excepcional combinação de propriedades, incluindo uma boa capacidade de mucopenetração e uma grande capacidade de carga. Ao contrário dos métodos convencionais de revestimento, usamos um copolímero dibloco, que consiste em dois blocos hidrofóbicos e hidrofílicos, que se auto-organiza em polimerosomos sob hidratação. Devido à inércia do bloco hidrofílico, estes polimerosomos devem ser, por natureza, muco penetradores. Além disso, sua estrutura oca fornece os polimersomos para serem carregados com carga hidrofílica, enquanto a carga hidrofóbica pode ser transportada através da membrana. Por conta da utilização de um polímero hidrolisável na presença de ácido, ácido poli láctico (PLA) como a espinha dorsal copolímero, demonstramos que estes polimerosomos podem liberar o conteúdo, após aplicação do estímulos externo relacionado ao pH. Os experimentos de rastreamento de partículas demonstraram que os polimersomos se difundem mais rápido do que as partículas não revestidas, em muco de intestino de porco, e testes de biodistribuição apresentaram resultados encorajadores para a entrega localizada de fármacos de maneira mais homogênea, melhorando a biodisponibilidade e efeitos terapeuticos. Mais estudos relacionados ao aumento da eficiência de encapsulação e testes de efetividade in vivo no tratamento de doenças devem ser promovidos. Acreditarmos que combinação das vantagens relacionadas à estrutura vesicular dos polimerossomas, estabilidade, e muco penetração possibilitam o desenvolvimento de uma nova plataforma para a entrega controlada de medicamentos na mucosa. / Mucus protects the human body by trapping foreign particulates but also poses a barrier for drug delivery by slowing down the mobility of drug carriers. To design mucus penetrating carriers, solid particles are typically coated with inert polymers such as polyethylene glycol (PEG) to prevent mucoadhesion. However, the solid structure of these particles limits their loading capabilities and the process to coat them requires a complex synthesis. In this thesis we studied methods to fabricate nanocarriers with an exceptional combination of properties including a good mucus-penetration capability and loading capacity of hydrophilic and hydrophobic cargos. Unlike conventional coating methods, we use a diblock copolymer, consisting of both hydrophobic and hydrophilic blocks, which self-assembles into polymersomes under hydration. Because of the inertness of the hydrophilic block, these polymersomes should be mucus-penetrating by nature. Moreover, their hollow structure provides the polymersomes to be loaded with hydrophilic cargo, whereas hydrophobic cargo can be carried through the membrane. Importantly, by using a hydrolysable acid-catalyzed polymer (poly lactic acid, PLA) as the copolymer backbone, we demonstrate that these polymersomes can release contents upon application of external pH stimuli. Particle Tracking experiments demonstrated that polymersomes diffuse faster than uncoated particles in porcine intestine mucus, and biodistribution tests displayed encouraging results towards more homogeneous local drug-delivery, helping bioavailability as well as therapeutic efects. More studies related to the increase of encapsulation efficiency, and in vivo disease treatment tests should be promoted. Although we believe that combining the advantages of polymersome carrier, and tunning the membrane composition, this mucus-penetrating carrier we propose may provide as a new platform for mucosal drug delivery.
|
18 |
Mucus-penetrating polymersomes as a potential lung drug delivery system: preparation, in vitro characterization, and biodistribution tests / Mucus-penetrating polymersomes as a potential lung drug delivery system: preparation, in vitro characterization, and biodistribution testsMiranda, Beatriz Nogueira Messias de 28 September 2018 (has links)
O muco protege o corpo humano de partículas externas, mas também representa uma barreira para a entrega de controlada de medicamentos através de nanocarregadores. Para ultrapassar a barreira do muco e impedir mucoadesão, nanopartículas sólidas são normalmente revestidas com polímeros inertes, tais como o polietileno glicol (PEG). No entanto, trata-se de um procedimento relativamente complexa. Nesta tese, estudamos métodos para fabricar nanocarreadores com uma excepcional combinação de propriedades, incluindo uma boa capacidade de mucopenetração e uma grande capacidade de carga. Ao contrário dos métodos convencionais de revestimento, usamos um copolímero dibloco, que consiste em dois blocos hidrofóbicos e hidrofílicos, que se auto-organiza em polimerosomos sob hidratação. Devido à inércia do bloco hidrofílico, estes polimerosomos devem ser, por natureza, muco penetradores. Além disso, sua estrutura oca fornece os polimersomos para serem carregados com carga hidrofílica, enquanto a carga hidrofóbica pode ser transportada através da membrana. Por conta da utilização de um polímero hidrolisável na presença de ácido, ácido poli láctico (PLA) como a espinha dorsal copolímero, demonstramos que estes polimerosomos podem liberar o conteúdo, após aplicação do estímulos externo relacionado ao pH. Os experimentos de rastreamento de partículas demonstraram que os polimersomos se difundem mais rápido do que as partículas não revestidas, em muco de intestino de porco, e testes de biodistribuição apresentaram resultados encorajadores para a entrega localizada de fármacos de maneira mais homogênea, melhorando a biodisponibilidade e efeitos terapeuticos. Mais estudos relacionados ao aumento da eficiência de encapsulação e testes de efetividade in vivo no tratamento de doenças devem ser promovidos. Acreditarmos que combinação das vantagens relacionadas à estrutura vesicular dos polimerossomas, estabilidade, e muco penetração possibilitam o desenvolvimento de uma nova plataforma para a entrega controlada de medicamentos na mucosa. / Mucus protects the human body by trapping foreign particulates but also poses a barrier for drug delivery by slowing down the mobility of drug carriers. To design mucus penetrating carriers, solid particles are typically coated with inert polymers such as polyethylene glycol (PEG) to prevent mucoadhesion. However, the solid structure of these particles limits their loading capabilities and the process to coat them requires a complex synthesis. In this thesis we studied methods to fabricate nanocarriers with an exceptional combination of properties including a good mucus-penetration capability and loading capacity of hydrophilic and hydrophobic cargos. Unlike conventional coating methods, we use a diblock copolymer, consisting of both hydrophobic and hydrophilic blocks, which self-assembles into polymersomes under hydration. Because of the inertness of the hydrophilic block, these polymersomes should be mucus-penetrating by nature. Moreover, their hollow structure provides the polymersomes to be loaded with hydrophilic cargo, whereas hydrophobic cargo can be carried through the membrane. Importantly, by using a hydrolysable acid-catalyzed polymer (poly lactic acid, PLA) as the copolymer backbone, we demonstrate that these polymersomes can release contents upon application of external pH stimuli. Particle Tracking experiments demonstrated that polymersomes diffuse faster than uncoated particles in porcine intestine mucus, and biodistribution tests displayed encouraging results towards more homogeneous local drug-delivery, helping bioavailability as well as therapeutic efects. More studies related to the increase of encapsulation efficiency, and in vivo disease treatment tests should be promoted. Although we believe that combining the advantages of polymersome carrier, and tunning the membrane composition, this mucus-penetrating carrier we propose may provide as a new platform for mucosal drug delivery.
|
19 |
Synthesis of Photo Crosslinked and pH Sensitive Polymersomes and Applications in Synthetic BiologyGaitzsch, Jens 10 April 2013 (has links) (PDF)
As an inspiration from nature, polymeric vesicles can be formed from amphiphilic block-copolymers. These vesicles are called polymersomes and have applications in drug delivery and as nanoreactors. Within this thesis, photo cross-linked and pH sensitive polymersomes were synthesized, characterized and applied on cells as well as bionanoreactors. The stability due to the crosslinking yielded polymersomes which show a distinct and reproducible swelling upon repeated pH changes. If the non cross-linked vesicles were exposed to a plasma-cleaned surface, they formed a tethered singly and multiple bilayers. Upon studying these membranes, they turned out to harden upon crosslinking and showed a completely non-fluid behaviour. Additionaly, the polymersome-cell interactions were studied and yielded a high influence of the crosslinking conditions on cellular toxicity. If crosslinked for a long time in a phosphate-free enviroment, the polymersomes proved to be least toxic. Finally, an enzyme was incorporated into the polymersomes to create bionanoreactors. Due to the pH sensitivity and swelling, the vesicles created yielded a pH controlled nanoreactor with enzymatic activity and a swollen, e.g. acidic, state only.
|
20 |
Synthese funktionalisierter Polymersome mit einstellbarer pH-Responsivität und Charakterisierung ihrer MembraneigenschaftenGumz, Hannes 14 March 2018 (has links) (PDF)
Die Übertragung der amphiphilen Grundbausteine der Liposome in die Welt der Polymere führte zu Blockcopolymeren, welche sogenannte Polymersome bilden können. Die synthetische Herkunft der Polymere ermöglicht es, eine Vielzahl von verschiedenen chemischen Funktionalitäten einzubringen. Anwendungen von Polymersomen werden vor allem als Wirkstoffträgersystem oder im Bereich der synthetischen Biologie als Nanoreaktoren oder künstliche Zellorganellen ausgemacht.
In vielen Fällen wird dabei eine Schaltbarkeit oder Responsivität der Vesikel gegenüber äußerer Stimuli benötigt. Als nächste Stufe der Komplexizität können die responsiven, »smarten« Polymersome innerhalb ihrer Membran quervernetzt werden, wodurch es möglich wird, den Durchmesser und die Membranpermeabilität der Vesikel reversibel hin- und herzuschalten. Diese Arbeit baut dabei auf pH-responsiven Polymersomen auf, welche durch photochemische Reaktionen vernetzt werden.
Dabei soll zunächst der Frage nachgegangen werden, an welchem pH Wert genau der Übergang von kollabierten zu gequollenen Vesikeln erfolgt und wie sich dieser »kritischer pH« (pH*) verändern und einstellen lässt. Neben der Herstellung von maßgeschneiderten Polymersomen ist aber auch die detaillierte Charakterisierung ihrer Membraneigenschaften unabdingbar, wofür die Titration mit Fluoreszenz-Sonden eingesetzt wurde. Darüber hinaus wurden Enzyme in die Vesikel eingekapselt wobei die neuartige Methode der post-Verkapselung untersucht wurde.
|
Page generated in 0.077 seconds