• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito autorreparador em primer carregado com inibidor de corrosão encapsulado em haloisita. / Self-healing effect of primer loaded with corrosion inhibitor encapsulated in halloysite.

Carvas, Gabriela Silva Ferreira 14 June 2019 (has links)
O objetivo deste trabalho é avaliar o efeito autorreparador de um primer alquídico base solvente (SB) e um primer acrílico base água (WB) aditivados com nanocontainers de haloisita carregados com inibidor de corrosão dodecilamina (DDA) aplicados em aço carbono. O efeito inibidor da dodecilamina foi avaliado através de ensaios eletroquímicos de espectroscopia de impedância eletroquímica (EIS) em diferentes condições, sendo verificada que a sua eficiência aumenta em meio ácido. Com o intuito de aumentar o lúmen da haloisita, gerando mais capacidade de carregamento de inibidor, a haloisita foi tratada com ácido sulfúrico 2 mol/L por 6 h a 55 °C. A haloisita tratada foi caracterizada através de análises termogravimétricas (TGA) e microscopia eletrônica de varredura (MEV). Em seguida, a dodecilamina foi carregada em haloisita tratada, através da técnica de pulso de vácuo. A cinética de liberação do inibidor de dentro da haloisita foi estudada através da técnica de EIS, onde foi constatada que a sua atuação é dependente do pH, com maior velocidade de liberação em pH 2. Os nanocontainers foram adicionados em um primer alquídico base solvente e um primer acrílico base água para a avaliação da resistência à corrosão dos sistemas através de espectroscopia de impedância eletroquímica (EIS), técnica de varredura com eletrodo vibratório (SVET) e ensaios acelerados de corrosão em câmara de névoa salina (SSC). A aderência dos dois sistemas foi avaliada através do ensaio de aderência por tração (pull-off). Para os dois sistemas avaliados foi possível verificar o efeito autorreparador, porém ele não foi tão longo, provavelmente devido à baixa eficiência no carregamento da dodecilamina na haloisita. A análise de custo da haloisita carregada com dodecilamina mostrou a necessidade de otimização dos processos de carregamento a fim de viabilizar o projeto na indústria de tintas. / The aim of this work is to evaluate the self-healing effect of a solvent based (SB) alkyd primer and a water based (WB) acrylic primer loaded with dodecylamine (DDA) corrosion inhibitor encapsulated in halloysite nanocontainers on carbon steel. The inhibitor effect of dodecylamine was evaluated by electrochemical impedance spectroscopy (EIS) under different conditions, and it was verified that its efficiency increases in acid medium. To enlarge halloysite lumen and increase its loading capacity, halloysite was treated with 2 mol/L sulfuric acid for 6 h at 55 °C. Halloysite before and after treatment was characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Thereafter, the dodecylamine was loaded into treated halloysite by the vacuum pulse technique. The release kinetics of the inhibitor from within halloysite nanotubes were studied through the EIS technique where it was found that the action of halloysite is pH-dependent, with a higher release kinetics at pH 2. The nanocontainers were loaded in a solvent based alkyd primer and a water based acrylic primer for the evaluation of the corrosion resistance of the systems through electrochemical impedance spectroscopy (EIS), scanning vibration electrode technique (SVET) and accelerated corrosion tests in a salt spray chamber (SSC). The adhesion of the two systems was evaluated through the pull-off adhesion test. For the two systems evaluated, it was possible to verify the self-healing effect, but this effect was not long, probably due to the low loading efficiency of dodecylamine in halloysite nanotubes. The cost analysis of halloysite loaded with dodecylamine showed that the loading process needs an optimization in order to make this project feasible in the coating industry.
2

Dielectric investigations on attograms and zeptograms of matter / Etudes diélectriques sur des attogrammes et zeptogrammes de matière

Houachtia, Afef 13 January 2016 (has links)
Les recherches sur des attogrammes (1 attogramme = 10 -18 gramme) et zeptogrammes (1 zeptogramme = 10-21 gramme) de matière offrent la possibilité de mettre en évidence la transition entre la nanoscience et la physique des molécules, ouvrant la porte à des questions fondamentales en physique de la matière molle, comme par exemple ‘’Quelle est la quantité minimale de matière nécessaire pour ‘‘définir’’ les propriétés des matériaux ?’’. Les propriétés électriques et diélectriques des matériaux, à cette échelle, sont étudiées par la spectroscopie diélectrique. Cette technique offre une large gamme de fréquence, pour mesurer les propriétés diélectriques des matériaux, couvrant plus de 10 ordres de grandeur et allant de 10-3 à 10+7 Hz. Cette technique assure une caractérisation précise d’une grande diversité des phénomènes physiques qui se déroulent à des échelles de longueur et de temps différents, tels que: les transitions des phases, les fluctuations de densité, les fluctuations moléculaires, le transport des charges, etc. Les mesures à l’échelle des attogrammes et zeptogrammes nécessitent l’utilisation des cellules ayant des dimensions nanométriques. Basé sur le concept d’utiliser des nano-conteneurs comme des cellules expérimentales, un développement expérimental a été mis en évidence, dans cette thèse, permettant d’étudier la dynamique moléculaire et les transitions des phases des matériaux polymères, allant jusqu’au zeptogrammes de matière. Cette approche permet de cristalliser des très petites quantités des matériaux sous l’application d’un champ électrique élevé, dans le but d’induire une cohérence macroscopique des fonctions moléculaires. Cela peut donner lieu à des nouvelles propriétés des matériaux, qui n’existent pas dans le cas des matériaux en masse / Dielectric investigations on attograms (1 attogram = 10 -18 gram) and zeptograms of matter (1 zeptogram = 10 -21 gram) offer the possibility of exploring the transition between nanoscience and molecule physics, opening the door for fundamental questions in soft-matter physics, such as for instance “What is the minimum amount of matter necessary to “define” the material properties?”. The electric and dielectric properties of materials at this level are investigated by Broadband Dielectric Spectroscopy. This technique provides an extraordinary broad frequency range, for measuring dielectric properties of matter, covering more than 10 orders of magnitude, typically from 10-3 to 10+7Hz. It ensures a precise characterization of large diversity of physical phenomena taking place at different length and time scales such as: phase transitions, density fluctuations, molecular fluctuations, charge transport processes, etc. Measurements on the scale of attograms and zeptograms require sample cells having all three dimensions on the nanometric length-scale. Based on the concept of employing nanocontainers as experimental cells, a novel experimental development allowing investigations on molecular dynamics and phase transitions of polymeric materials down to the level of zeptograms is demonstrated in the present PhD study. This approach enables one to crystallize tiny amounts of matter under high electric fields with the goal of inducing a macroscopic coherence of molecular functionalities. This could give rise to new material properties, not naturally available in the case of bulk materials.
3

Modified layered double hydroxide (LDH) platelets as corrosion inhibitors reservoirs dispersed into coating for aluminun alloy 2024 / Système plaquettaire d'Hydroxyde Double Lamellaire (HDL) modifie comme reservoir d'inhibiteur de corrosion disperse dans un revetement pour l'aluminium 2024

Stimpfling, Thomas 21 October 2011 (has links)
L’alliage d’aluminium 2024 est très répandu dans l’industrie aéronautique et automobile. Le processus de corrosion peut entrainer des dommages irréversibles pouvant engendrer des issues fatales dans le domaine aéronautique. Ainsi plusieurs couches de revêtements sont déposées à la surface du métal à protéger pour prévenir le processus de corrosion. Depuis le début du 20ième siècle, le chrome hexavalent (CrVI) a été largement utilisé comme inhibiteur de corrosion dans les différentes couches du revêtement (prétraitement, primer et top-coat). La toxicité de ce composé envers l’homme et l’environnement a entrainé son interdiction et donc son remplacement comme agent de protection. Le confinement d’agent anticorrosif dans des nano-conteneurs a ainsi été reporté puisqu’un effet auto-réparant, en relargant sur demande, peut-être apporté : l’inhibiteur de corrosion agit quand le dommage apparait. Cette étude est focalisée sur l’utilisation de matériaux de type Hydroxydes Doubles Lamellaires (HDL) comme réservoir d’inhibiteurs de corrosion en raison leur propriété d’échange. Dans ce travail, plusieurs molécules ont été étudiées comme potentiel inhibiteur de corrosion. Celles-ci ont été tout d’abord caractérisées par DC-polarisation afin de déterminer la nature de leur comportement inhibiteur (anodique, cathodique ou les deux). Ensuite, ces agents anticorrosifs ont été intercalés dans des matrices HDL et leur capacité de relargage ainsi que leur comportement face au processus de corrosion ont été étudiés. Les particules HDL ainsi obtenues ont été dispersées dans la formulation d’un revêtement primaire et déposé directement sur l’alliage aluminium 2024. La résistance à la corrosion a été suivie par spectroscopie d’impédance complexe. Les propriétés d’auto-protection de notre revêtement (relargage d’agent anticorrosive encas de dommage) et leur propriété barrière, apportée par la morphologie lamellaire des nano-conteneurs, entrainant une diminution de la perméabilité aux espèces agressives (ex. eau, O2, électrolyte) responsable de l’apparition de cloques sur les revêtements, ont ainsi été caractérisées. / Aluminum alloy 2024 is widely used in aircraft and automotive industry. Corrosion processes can provide irreversible damage on the metal substrate which could have a tragic issue in the aircraft domain. Thus, several coating layers have been applied on the metal substrate to prevent corrosion process. Since the beginning of the 20th century, hexavalent chromate compounds have been extensively used as corrosion inhibitor agents for paint, primer and conversion coating. The toxicity for human health and environment has led to replace such compounds. The literature has reported different possibilities to replace such unfriendly compounds. Moreover, the entrapment of corrosion inhibitors in nanocontainer provides a self-healing effect by releasing, on demand, the active species when damage occurs. This study focuses on Layered Double Hydroxide (LDH) material as reservoir due to its exchange properties. This study has characterized several potential corrosion inhibitor molecules by DC-Polarization to determine the nature of the inhibitor compound (i.e. anodic, cathodic or both of them). Further, active anticorrosive species have been intercalated into LDH framework. Then, the release of inhibitor agents and their subsequent behaviour toward corrosion inhibition have been evaluated. Modified LDH materials have been further dispersed in the primer coating formulation and applied on aluminum alloys 2024 substrate. Corrosion inhibition has been followed by electrochemical impedance spectroscopy experiments on scratched and unscratched panel which have permitted to evaluate the self-healing property of these modified LDH materials when damage occurs and the barrier property provided by the lamellar morphology of the inorganic reservoir that is found to decrease the permeation by enhancing the tortuosity of the coating layer towards aggressive species (i.e. water, O2, electrolyte) responsible of the blistering phenomenon.
4

Multifunctional and Stimuli-Responsive Polymersomes for Biomedical Applications

Iyisan, Banu 16 January 2017 (has links) (PDF)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers. The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug. In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.
5

Multifunctional and Stimuli-Responsive Polymersomes for Biomedical Applications

Iyisan, Banu 18 November 2016 (has links)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers. The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug. In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.

Page generated in 0.0425 seconds