• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semiconducting Organosilicon-based Hybrids for the Next Generation of Stretchable Electronics

Ditte, Kristina 12 May 2023 (has links)
During past years, organic-based electronic devices revealed high promise to supplement the ubiquitous silicon-based electronic devices and enable new fields of applications. At the center of this development is the considerable progress regarding π-conjugated polymer semiconductors (PSCs): Due to their processability from solution, light-weight, as well as low-cost, PSCs are now evolving towards production-scale of new technologies, e.g., in organic solar cells (OSCs), organic field-effect transistors (OFETs), and organic light emitting diodes (OLEDs). Especially OFETs are of fundamental importance, as they constitute the switching units in all logic circuits and display technologies. However, the future world is expected to be full with smart electronics and communication devices integrated in clothes, tools and even interacting with the human body, e.g., as on-skin wearable sensors. For this the electrically-active material, just as a human tissue, requires to combine several properties in addition to being charge conducting: They need to show (i) mechanical softness, (ii) capacity to repair, (iii) multimodal sensitivity, as well as (iv) biodegradability. Here, PSCs still face challenges as they are brittle and break upon applying a mechanical stress. When trying to address this issue, the existing knowledge on mechanical properties of well-established polymeric plastics, e.g., polystyrene, cannot be directly applied for several reasons, e.g., (i) the bulkiness of monomers (including long side-chains), (ii) the rigid π-conjugated backbone, (iii) the low degree of polymerization, (iv) the small quantities in which PSCs are available, etc. Moreover, these kinds of materials should not only be mechanically compliant and stretchable, but furthermore retain their charge mobility upon stretching, and withstand numerous of mechanical stretching cycles. Considering this complex problem, researchers have been developing and investigating several approaches to combine good electrical properties and mechanical compliance within one material. These approaches include (i) stress-accommodating engineering, (ii) blending of PSCs into elastic matrix, as well as (iii) molecular engineering approach. The latter seeks to interlink mechanical and electrical properties on the molecular level, i.e., synthesize polymers that are charge conducting and stretchable. Different strategies were tested, from the modification of side chains, to the introduction of conjugation breakings spacers into the backbone. Selected works sought to incorporate stretchability and conductivity by utilizing block copolymers, i.e., covalently linking a conjugated and a non-conjugated polymer chain, resulting in a phase separation of both constituents and preserving their respective properties. The ultimate goal of this work is to achieve an intrinsically stretchable and electrically high-performing PSC via the block copolymer approach. This is done by connecting organosilicone, namely the polydimethylsiloxane (PDMS) elastomer – possessing outstanding mechanical properties, as well as good environmental and air stability – with a conjugated diketopyrrolopyrrole (DPP)-based donor-acceptor copolymer. The final obtained structure of this polymer is a tri-block copolymer (TBC) consisting of an inner DPP-based polymer block and two outer soft PDMS polymer blocks. The content of PDMS block can be controlled and be very high (up to 67 wt%), and easy processing, e.g., via shear coating, is possible. Relatively high charge carrier mobilities – in the same range as the reference DPP-based copolymer (i.e., without outer PDMS blocks) – are retained, and the block copolymers withstands numerous stretching cycles (up to 1500 cycles) without losing electrical functionality. Finally, one of the block copolymers was successfully incorporated into a biosensor for COVID-19 antibodies and antigens detection. Overall, the findings of this work show that the block copolymer is a highly versatile approach to obtain functional and stretchable semiconductors with high charge carrier mobilities. Block copolymers consisting of a high-performing donor-acceptor PSC and a biocompatible elastomer could contribute towards one of the long-term goals of organic electronics – the realization of mechanically compliant materials for applications in stretchable electronics (e.g., wearable sensors, electronic skin, etc.).
2

Multifunctional and Stimuli-Responsive Polymersomes for Biomedical Applications

Iyisan, Banu 16 January 2017 (has links) (PDF)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers. The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug. In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.
3

Multifunctional and Stimuli-Responsive Polymersomes for Biomedical Applications

Iyisan, Banu 18 November 2016 (has links)
The demand for multifunctional nanocontainers possessing both recognition ability and responsive nature is increasing greatly because of their high potential in various biomedical applications. The engineering of such smart nanovesicles is useful to enhance the efficiency of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery systems as well as designing sensing devices or conducting selective reactions as nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates the formation of multifunctional and stimuli-responsive polymersomes comprising various abilities including pH and light sensitivity as well as many reactive groups with sufficient accessibility to be used as smart and recognitive nanocontainers. The fabrication included several steps starting from the synthesis of azide and adamantane terminated block copolymers, which were then self-assembled to prepare the polymersomes with the corresponding functional groups for the subsequent post-conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click chemistry and strong host-guest complexations. The gained light responsivity with the aid of successful NVOC attachment enabled further selective photochemical reactions triggered either by UV or NIR light leading to liberated amine groups on the polymersome surface. Therein, these released amino groups were further conjugated with a model fluorescent compound as mimicking the attachment of biorecognition elements to see the direct picture of the applicability. To realize this concept in a more localized and selective way as well as to avoid the possible side effects of UV light, the NIR-light induced photochemical reactions and further dye coupling were performed when polymersomes were immobilized onto solid substrates. This fixation was achieved by adapting the host-guest chemistry into this part and conjugating the adamantane decorated polymersomes onto β-cyclodextrin coated substrates. Several investigations including adhesion behavior, pH sensitivity and mechanical properties of the established multifunctional polymersomes under liquid phase have been performed. It has been found that the polymersome shape is highly dependent on the attractive forces of the substrate and needs to be optimized to avoid the flattening of the vesicles. For these optimization steps, different conditions were investigated including the decrease of cyclodextrin amount and additional surface passivation with PEG molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of the polymersome membrane from AFM measurements showed a robust but still flexible “breathable” membrane which is an important criterion for the applicability of these smart and stable vesicles. In addition, the hosting ability as well as diffusion limits and sufficient membrane permeability of the polymersomes were observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules as an anticancer drug. In conclusion, the established multifunctional polymersomes are highly versatile and thus present new opportunities in the design of targeted and selective recognition systems which is highly interesting for various applications including development of microsystem devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy in the field of drug delivery.
4

Multiphase coexistence with sequence fractionation in random block copolymers / Multi-Phasenkoexistenz mit Sequenz-Fraktionierung in statistischen Block-Copolymeren

von der Heydt, Alice 23 September 2011 (has links)
No description available.
5

Relaxationen in komplexen Fluiden / Relaxations of complex fluids

Schwabe, Moritz 02 November 2010 (has links)
No description available.

Page generated in 0.0556 seconds