• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beitrag zum mechanischen Fügen von Metall-Kunststoff-Mischverbindungen

Georgi, Wolf 08 July 2014 (has links) (PDF)
Punktförmige Verbindungen, wie das Clinchen, bieten vorteilhafte Eigenschaften und werden in zunehmendem Maße in der Dünnblech verarbeitenden Industrie für metallische Verbindungen eingesetzt. Sie spielen gegenwärtig für Metall-Kunststoff-Verbindungen eine untergeordnete beziehungsweise gar keine Rolle. Dies ist wahrscheinlich der Tatsache geschuldet, dass Kunststoffe aufgrund ihrer mechanischen Eigenschaften ungeeignet für das Clinchen scheinen. In der vorliegenden Dissertation werden die Grundlagen für das Clinchen von Metall-Kunststoff-Verbindungen erarbeitet und qualifiziert, so dass es möglich ist, damit eine Verbindung dieser Werkstoffe reproduzierbar herzustellen. Im Speziellen werden Prozessmerkmale und mechanische Verbindungseigenschaften des Clinchens von Metall-Kunststoff-Verbindungen sowie der Feuchtigkeitseinfluss des Kunststofffügepartners und der Einfluss von Wärme vor und/oder nach dem Fügen untersucht. / Because of its advantageous properties there is an extended utilization of point-shaped joints, like the clinching, in the sheet processing industry for metal-metal joints. These joining technologies are not relevant for metal-thermoplastic joints currently. The main reason for this could be the fact that the clinching process seems not to be eligible for thermoplastic materials. In the present thesis the fundamentals for clinching metal to thermoplastics were worked out and qualified. The results allow creating reproducible joints out of these materials. Process features and mechanical properties of clinched metal-thermoplastic joints were investigated. Also the influence of moisture and heat input during and after the clinching process was in focus.
2

Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen

Tlatlik, Harald 17 April 2009 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit Wachstum und Aufbau von Fluorapatit-Gelatine-Nanokompositaggregaten. Diese Aggregate werden im sogenannten Doppeldiffusionsversuch biomimetisch erzeugt und ihre äußere Form bzw. Formentwicklung lässt sich anhand eines fraktalen Modells bis ins Detail nachvollziehen. Sie zeigen einen komplexen inneren Aufbau, in dem die Makromoleküle der organischen Komponente einerseits im Zentrum jeder Nanoeinheit und andererseits zu Strängen, den sogenannten Fibrillen, zusammengelagert am Aufbau der Kompositaggregate beteiligt sind. Im Fall des Kompositkeims ist die innere Architektur in hoher Detailstufe verstanden, auch wenn -- insbesondere bezüglich der späteren Wachstumsphasen -- eine Reihe ungeklärter Fragestellungen verbleibt. Ein zentrales Ergebnis der vorliegenden Arbeit bildet die Entdeckung eines weiteren Wachstumstypen, der im Vergleich zu den bekannten, fraktalen Kompositaggregaten grundsätzliche Unterschiede bezüglich des inneren und äußeren Aufbaus zeigt. Der Grund für die andersartige Formentwicklung liegt in der Versteifung der organischen Komponente durch eine vorangegangene Einlagerung von Calciumionen, wie sowohl experimentell als auch mit atomistischen Computersimulationen gezeigt werden konnte. Aufgrund der hohen Komplexität des Systems ist es bislang allerdings nicht möglich, lokale Ionen-Konzentrationen und pH-Werte vor bzw. während Nukleation und Wachstum der Kompositaggregate im Doppeldiffusionsversuch zu bestimmen. Deshalb wurde ein Ersatzversuch -- der sehr ähnlich strukturierte Aggregate erzeugt, sich aber mit rechnerischen Methoden analysieren lässt -- entworfen und untersucht. Anhand dieser Ergebnisse konnte erstmals die "Geschichte" von Fluorapatit-Gelatine-Nanokompositaggregaten detailliert nachvollzogen werden. Da über die Rolle der Gelatine beim Wachstum der Kompositaggregate nur wenig bekannt ist, wurde eine Reihe von Versuchen durchgeführt, in denen Gelatinen mit verschiedenen Molekülmassenverteilungen eingesetzt wurden. Es stellte sich heraus, dass für selbstorganisiertes und insbesondere fraktales Wachstum der Kompositaggregate lange, möglichst wenig gestörte Makromoleküle von zentraler Wichtigkeit sind. Um die Funktion der organischen Komponente für das Kompositwachstum näher zu untersuchen, wurden Oberflächen von Kompositkeimen mit rasterkraftmikroskopischen Methoden studiert. Durch Säuberung der Oberflächen konnten Austrittsstellen der organischen Komponente durch die Oberfläche der Kompositkeime identifiziert werden. Damit konnte gezeigt werden, dass die organische Komponente aus dem Inneren des Festkörpers teilweise durch die Oberfläche dringt und somit während des Wachstums weit in das Gel hineinreichen sollte. Für die mesoskopische Strukturbildung der Kompositaggregate spielen intrinsische elektrische Felder eine essenzielle Rolle. Deshalb wurde bislang eine Wirkung externer elektrischer Felder auf das Wachstum der Kompositaggregate vermutet. Im Rahmen der vorliegenden Arbeit wurde herausgearbeitet, dass es zwar zu keiner direkten Beeinflussung kommen kann, jedoch in den elektrodennahen Bereichen des Gels eine Ordnung der organischen Moleküle durch externe elektrische Felder zu erwarten ist. Dies könnte eine Wirkung auf wachsende Kompositaggregate zeigen. Da diese Effekte auch aufgrund der elektrischen Felder um die dipolaren Kompositaggregate zu erwarten sind, könnte eine ähnliche Strukturierung der Gelatine in der Nähe der wachsenden Kompositaggregate stattfinden. Insgesamt wurden in dieser Arbeit eine Reihe grundlegender Beiträge zur Erforschung der biomimetisch erzeugten Fluorapatit-Gelatine-Nanokompositaggregate geleistet. Es konnten neue Erkenntnisse zur inneren und äußeren Architektur der Kompositaggregate, zu Mechanismen der Morphogenese und deren wichtigsten Einflussgrößen sowie zum Verständnis der chemisch-physikalischen Vorgänge auf atomarer Größenskala gewonnen werden. Als besonders fruchtbar erwies sich die Verbindung von Experimenten mit theoretischen Untersuchungen, so dass dieser Weg auch in Zukunft grundlegende Erkenntnisse bei der Erforschung der Biomineralisation verspricht und weiterhin verfolgt werden sollte.
3

Neue Untersuchungen zu Wachstum und Struktur von Fluorapatit-Gelatine-Nanokompositen

Tlatlik, Harald 03 April 2009 (has links)
Die vorliegende Dissertation beschäftigt sich mit Wachstum und Aufbau von Fluorapatit-Gelatine-Nanokompositaggregaten. Diese Aggregate werden im sogenannten Doppeldiffusionsversuch biomimetisch erzeugt und ihre äußere Form bzw. Formentwicklung lässt sich anhand eines fraktalen Modells bis ins Detail nachvollziehen. Sie zeigen einen komplexen inneren Aufbau, in dem die Makromoleküle der organischen Komponente einerseits im Zentrum jeder Nanoeinheit und andererseits zu Strängen, den sogenannten Fibrillen, zusammengelagert am Aufbau der Kompositaggregate beteiligt sind. Im Fall des Kompositkeims ist die innere Architektur in hoher Detailstufe verstanden, auch wenn -- insbesondere bezüglich der späteren Wachstumsphasen -- eine Reihe ungeklärter Fragestellungen verbleibt. Ein zentrales Ergebnis der vorliegenden Arbeit bildet die Entdeckung eines weiteren Wachstumstypen, der im Vergleich zu den bekannten, fraktalen Kompositaggregaten grundsätzliche Unterschiede bezüglich des inneren und äußeren Aufbaus zeigt. Der Grund für die andersartige Formentwicklung liegt in der Versteifung der organischen Komponente durch eine vorangegangene Einlagerung von Calciumionen, wie sowohl experimentell als auch mit atomistischen Computersimulationen gezeigt werden konnte. Aufgrund der hohen Komplexität des Systems ist es bislang allerdings nicht möglich, lokale Ionen-Konzentrationen und pH-Werte vor bzw. während Nukleation und Wachstum der Kompositaggregate im Doppeldiffusionsversuch zu bestimmen. Deshalb wurde ein Ersatzversuch -- der sehr ähnlich strukturierte Aggregate erzeugt, sich aber mit rechnerischen Methoden analysieren lässt -- entworfen und untersucht. Anhand dieser Ergebnisse konnte erstmals die "Geschichte" von Fluorapatit-Gelatine-Nanokompositaggregaten detailliert nachvollzogen werden. Da über die Rolle der Gelatine beim Wachstum der Kompositaggregate nur wenig bekannt ist, wurde eine Reihe von Versuchen durchgeführt, in denen Gelatinen mit verschiedenen Molekülmassenverteilungen eingesetzt wurden. Es stellte sich heraus, dass für selbstorganisiertes und insbesondere fraktales Wachstum der Kompositaggregate lange, möglichst wenig gestörte Makromoleküle von zentraler Wichtigkeit sind. Um die Funktion der organischen Komponente für das Kompositwachstum näher zu untersuchen, wurden Oberflächen von Kompositkeimen mit rasterkraftmikroskopischen Methoden studiert. Durch Säuberung der Oberflächen konnten Austrittsstellen der organischen Komponente durch die Oberfläche der Kompositkeime identifiziert werden. Damit konnte gezeigt werden, dass die organische Komponente aus dem Inneren des Festkörpers teilweise durch die Oberfläche dringt und somit während des Wachstums weit in das Gel hineinreichen sollte. Für die mesoskopische Strukturbildung der Kompositaggregate spielen intrinsische elektrische Felder eine essenzielle Rolle. Deshalb wurde bislang eine Wirkung externer elektrischer Felder auf das Wachstum der Kompositaggregate vermutet. Im Rahmen der vorliegenden Arbeit wurde herausgearbeitet, dass es zwar zu keiner direkten Beeinflussung kommen kann, jedoch in den elektrodennahen Bereichen des Gels eine Ordnung der organischen Moleküle durch externe elektrische Felder zu erwarten ist. Dies könnte eine Wirkung auf wachsende Kompositaggregate zeigen. Da diese Effekte auch aufgrund der elektrischen Felder um die dipolaren Kompositaggregate zu erwarten sind, könnte eine ähnliche Strukturierung der Gelatine in der Nähe der wachsenden Kompositaggregate stattfinden. Insgesamt wurden in dieser Arbeit eine Reihe grundlegender Beiträge zur Erforschung der biomimetisch erzeugten Fluorapatit-Gelatine-Nanokompositaggregate geleistet. Es konnten neue Erkenntnisse zur inneren und äußeren Architektur der Kompositaggregate, zu Mechanismen der Morphogenese und deren wichtigsten Einflussgrößen sowie zum Verständnis der chemisch-physikalischen Vorgänge auf atomarer Größenskala gewonnen werden. Als besonders fruchtbar erwies sich die Verbindung von Experimenten mit theoretischen Untersuchungen, so dass dieser Weg auch in Zukunft grundlegende Erkenntnisse bei der Erforschung der Biomineralisation verspricht und weiterhin verfolgt werden sollte.
4

Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures

Klein, Mario, Podlesak , Frank, Höfer, Kevin, Seidlitz, Holger, Gerstenberger, Colin, Mayr, Peter, Kroll, Lothar 27 August 2015 (has links) (PDF)
Multi-material-design (MMD) is commonly realized through the combination of thin sheet metal and fibre reinforced plastics (FRP). To maximize the high lightweight potential of the material groups within a multi-material system as good as possible, a material-adapted and particularly fibre adjusted joining technology must be applied. The present paper focuses on two novel joining technologies, the Flow Drill Joining (FDJ) method and Spin-Blind-Riveting (SBR), which were developed for joining heavy-duty metal/composite hybrids. Tests were carried out with material combinations which are significant for lightweight constructions such as aluminium (AA5083) and carbon fibre-reinforced polyamide in sheet thickness of 1.8 mm. The mechanical testing and manufacturing of those multi-material joints was investigated.
5

Beitrag zum mechanischen Fügen von Metall-Kunststoff-Mischverbindungen

Georgi, Wolf 08 July 2014 (has links)
Punktförmige Verbindungen, wie das Clinchen, bieten vorteilhafte Eigenschaften und werden in zunehmendem Maße in der Dünnblech verarbeitenden Industrie für metallische Verbindungen eingesetzt. Sie spielen gegenwärtig für Metall-Kunststoff-Verbindungen eine untergeordnete beziehungsweise gar keine Rolle. Dies ist wahrscheinlich der Tatsache geschuldet, dass Kunststoffe aufgrund ihrer mechanischen Eigenschaften ungeeignet für das Clinchen scheinen. In der vorliegenden Dissertation werden die Grundlagen für das Clinchen von Metall-Kunststoff-Verbindungen erarbeitet und qualifiziert, so dass es möglich ist, damit eine Verbindung dieser Werkstoffe reproduzierbar herzustellen. Im Speziellen werden Prozessmerkmale und mechanische Verbindungseigenschaften des Clinchens von Metall-Kunststoff-Verbindungen sowie der Feuchtigkeitseinfluss des Kunststofffügepartners und der Einfluss von Wärme vor und/oder nach dem Fügen untersucht. / Because of its advantageous properties there is an extended utilization of point-shaped joints, like the clinching, in the sheet processing industry for metal-metal joints. These joining technologies are not relevant for metal-thermoplastic joints currently. The main reason for this could be the fact that the clinching process seems not to be eligible for thermoplastic materials. In the present thesis the fundamentals for clinching metal to thermoplastics were worked out and qualified. The results allow creating reproducible joints out of these materials. Process features and mechanical properties of clinched metal-thermoplastic joints were investigated. Also the influence of moisture and heat input during and after the clinching process was in focus.
6

Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures

Klein, Mario, Podlesak, Frank, Höfer, Kevin, Seidlitz, Holger, Gerstenberger, Colin, Mayr, Peter, Kroll, Lothar 27 August 2015 (has links)
Multi-material-design (MMD) is commonly realized through the combination of thin sheet metal and fibre reinforced plastics (FRP). To maximize the high lightweight potential of the material groups within a multi-material system as good as possible, a material-adapted and particularly fibre adjusted joining technology must be applied. The present paper focuses on two novel joining technologies, the Flow Drill Joining (FDJ) method and Spin-Blind-Riveting (SBR), which were developed for joining heavy-duty metal/composite hybrids. Tests were carried out with material combinations which are significant for lightweight constructions such as aluminium (AA5083) and carbon fibre-reinforced polyamide in sheet thickness of 1.8 mm. The mechanical testing and manufacturing of those multi-material joints was investigated.

Page generated in 0.0668 seconds