• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolation, purification and characterization of a 'factor' from Fusarium oxysporum responsible for platinum nanoparticle formation

Govender, Yageshni January 2008 (has links)
Nanoparticles are microscopic particles in the nanometre range of between 1-100 nm. A wide variety of metal nanoparticles have been found to be produced by prokaryotic and eukaryotic organisms including several fungal species, when exposed to solutions containing metal salts. Previous studies have suggested that this bioreduction of metal particles may occur via an active reductase/hydrogenase enzyme process where H2 is the electron donor and positively charged platinum species act as the electron acceptors becoming reduced to a neutral metal nanoparticle. In view of this on going research, the current study investigated the “factors” in the fungus Fusarium oxysporum which were responsible for platinum nanoparticle formation. The fungus F.oxysporum was used in this study as it has been previously shown to produce a variety of nanoparticles including gold and silver. During exposure of the biomass to H2PtCl6 the initial response to the platinum salts was metal internalisation and subsequent reduction of H2PtCI6 to produce platinum nanoparticles. The observed localization and distribution of platinum precipitates provided some evidence for a hydrogenase mediated bioreduction of platinum salts to produce nanoparticles. Factors secreted by the fungus into the extracellular fluids, were shown to be responsible for platinum nanoparticle formation. From the identification, purification and characterisation studies it was concluded that a hydrogenase and other “factors” were responsible for platinum nanoparticle formation in F.oxysporum. Purification of the hydrogenase by freeze-drying and Sephacryl S200 size exclusion- ion exchange chromatography revealed the enzyme to be a dimer with a 29.4 and 44.5 kDa when analysed by a 10 % SDS-PAGE. Characterisation of the enzyme revealed optimal activity at a pH of 7.5 and temperature of 38 °C while it exhibited a poor thermal stability with a half life of 36 minutes. The kinetic parameters Vmax and Km were 3.16 U ml-1 and 3.64 mM respectively. The purified hydrogenase was used in subsequent experiments for the reduction of platinum salts, H2PtCl6 and PtCl2. the results indicated an over 90 % reduction of the platinum salts and TEM micrographs indicated the production of platinum nanoparticles under the various experimental conditions.
2

Hydrogenases from sulphate reducing bacteria and their role in the bioremediation of textile effluent /

Mutambanengwe, Cecil Clifford Zvandada. January 2006 (has links)
Thesis (M.Sc. (Biochemistry, Microbiology & Biotechnology)) - Rhodes University, 2007.
3

Enzymatic recovery of rhodium(III) from aqueous solution and industrial effluent using sulphate reducing bacteria: role of a hydrogenase enzyme

Ngwenya, Nonhlanhla January 2005 (has links)
In an attempt to overcome the high maintenance and costs associated with traditional physico-chemical methods, much work is being done on the application of enzymes for the recovery of valuable metals from solutions and industrial effluents. One of the most widely studied enzymatic metal recovery systems uses hydrogenase enzymes, particularly from sulphate reducing bacteria (SRB). While it is known that hydrogenases from SRB mediate the reductive precipitation of metals, the mechanism of enzymatic reduction, however, is not yet fully understood. The main aim of the present study was to investigate the role of a hydrogenase enzyme in the removal of rhodium from both aqueous solution and industrial effluent. A quantitative analysis of the rate of removal of rhodium(III) by a resting SRB consortium under different initial rhodium and biomass concentrations, pH, temperature, presence and absence of SRB cells and electron donor, was studied. Rhodium speciation was found to be the main factor controlling the rate of removal of rhodium from solution. SRB cells were found to have a higher affinity for anionic rhodium species, as compared to both cationic and neutral species, which become abundant when speciation equilibrium was reached. Consequently, a pH-dependant rate of rhodium removal from solution was observed. The maximum SRB uptake capacity for rhodium was found to be 66 mg rhodium per g of resting SRB biomass. Electron microscopy studies revealed a time-dependant localization and distribution of rhodium precipitates, initially intracellularly and then extracellularly, suggesting the involvement of an enzymatic reductive precipitation process. A hydrogenase enzyme capable of reducing rhodium(III) from solution was isolated and purified by PEG, DEAE-Sephacel anion exchanger and Sephadex G200 gel exclusion. A distinct protein band with a molecular weight of 62kDa was obtained when the hydrogenase containing fractions were subjected to a 10% SDS-PAGE. Characterization studies indicated that the purified hydrogenase had an optimum pH and temperature of 8 and 40°C, respectively. A maximum of 88% of the initial rhodium in solution was removed when the purified hydrogenase was incubated under hydrogen. Due to the low pH of the industrial effluent (1.31), the enzymatic reduction of rhodium by the purified hydrogenase was greatly retarded. It was apparent that industrial effluent pretreatment was necessary before the application an enzymatic treatment method. In the present study, however, it has been established that SRB are good candidates for the enzymatic recovery of rhodium from both solution and effluent.
4

Hydrogenases from sulphate reducing bacteria and their role in the bioremediation of textile effluent

Mutambanengwe, Cecil Clifford Zvandada January 2007 (has links)
The continuing industrial development has led to a corresponding increase in the amount of waste water generation leading to a consequential decline in levels and quality of the natural water in the ecosystem. Textile industries consume over 7 x 10[superscript 5] tons of dyes annually and use up to 1 litre of water per kg of dye processed and are third largest polluters in the world, the problem being aggravated by the inefficiencies of the dye houses. An abundance of physio-chemical methods are in use world wide, however, there is increasing concern as to their impact in effectively treating textile effluents as they introduce secondary pollutants during the ‘remediation’ process which are quite costly to run, maintain and clean up. Research on biological treatment has offered simple and cost effective ways of bioremediating textile effluents. While aerobic treatment of textile dyes and their effluents has been reported, its major draw back is commercial up-scaling and as such anaerobic systems have been investigated and shown to degrade azo dyes, which form the bulk of the dyes used world wide. However, the mechanisms involved in the bioremediation of these dyes are poorly understood. The aims of this study were to identify and investigate the role of enzymes produced by sulphate reducing bacteria (SRB) in bioremediating textile dye and their effluents. Sulphate reducing bacteria were used in this study because they are tolerant to harsh environmental conditions and inhibit the proliferance of pathogenic micro-organisms. The appearance of clear zones in agar plates containing azo dye concentrations ranging from 10 – 100 mgl[superscript -1] showed the ability of SRB to decolourize dyes under anaerobic conditions. Assays of enzymes previously reported to decolourise azo dyes were not successful, but led to the identification of hydrogenase enzyme being produced by SRB. The enzyme was found to be localised in the membrane and cytoplasm. A surface response method was used to optimize the extraction of the enzyme from the bacterial cells resulting in approximately 3 fold increase in hydrogenase activity. Maximum hydrogenase activity was found to occur after six days in the absence of dyes but was found to occur after one day in the presence of azo dyes. A decline in hydrogenase activity thereafter, suggested inhibition of enzymatic activity by the putative aromatic amines produced after azo cleavage. Purification of the hydrogenase by freeze drying, poly ethylene glycol, and Sephacryl – 200 size exclusion- ion exchange chromatography revealed the enzyme to have a molecular weight of 38.5 kDa when analyzed by a 12 % SDS-PAGE. Characterisation of the enzyme revealed optimal activity at a pH of 7.5 and temperature of 40 °C while it exhibited a poor thermal stability with a half-life of 32 minutes. The kinetic parameters V[subscript max] and K[subscript m] were 21.18 U ml[superscript -1} and 4.57 mM respectively. Application of the cell free extract on commercial dyes was not successful, and only whole SRB cells resulted in decolourisation of the dyes. Consequently trials on the industrial dyes and effluents were carried out with whole cells. Decolourisation rates of up to 96 % were achieved for the commercial dyes and up to 93 % for the industrial dyes over a period of 10 days.

Page generated in 0.0513 seconds