Spelling suggestions: "subject:"hydraulic"" "subject:"dydraulic""
631 |
Turbulent tube flow of dilute fiber suspensions.Seely, Truman L. 01 January 1968 (has links)
No description available.
|
632 |
Developement of Piezo-Hydraulic Actuation Systems Technology for use on a Helicopter Trailing Edge FlapHerdic, Scott Lucas 28 November 2005 (has links)
The purpose of this study was to create a proof-of-concept piezoelectric actuator system capable of meeting the performance requirements necessary for actuation of a trailing edge flap for a helicopter main rotor blade. Due to extremely small displacements produced by piezoelectric actuators, their output is amplified several times in order to produce the required displacement for this device. The amplification is accomplished in two stages. The first stage, mechanical amplification, uses differential length lever arms to increase the piezoelectric actuator output. The second stage, hydraulic amplification, is coupled to the first stage and uses differential area pistons to further amplify the output of the mechanical amplifier. The actuation systems force and displacement output is characterized based on frequency.
|
633 |
Study on The Application of FLOW-3D for Wave Energy Dissipation by a Porous StructureChen, Chun-Ho 11 September 2012 (has links)
Wave is one of the most common dynamic factors in marine engineering. This is the major affecting factor in the design of structures and coastal engineering that wave affect the structure or the coast, so there are many topics about wave absorbing issues. In this paper, FLOW-3D modeling is implemented for wave interaction with porous structures, and comparing with experiment. This is very different between the results of models using the proposed method by the FLOW-3D User Manual to set drag coefficients of porous media and the results of experiments. Therefore, to discuss the setting drag coefficients of porous media is one of this research project.
Configuration of this study, four different types of porous structures to explore the interaction with wave, the major categories: single, double and three-tier (two forms). FLOW-3D simulations of wave boundary in this article is to simulate the wave plate to manufacture wave, FLOW-3D simulations of wave with the previous studies are different with its built-in wave boundary. The results of simulation compare with experiment, and obtain water depth data both of them, and then programmatically wave analysis explore the differences between simulation and experiment.
The simulation results show that stroke set by the analog wave board need to reduce 10 percent of the original settings, and the simulation results are similar to experiment results. The differences between simulation and experiment are smaller when porous media parameter ¡¥b¡¦ setting formula adjust to 0.03/D ( D is the particle diameter)and parameter ¡¥a¡¦ setting formula changeless. Reducing wave of the four porous structures relate to the wave period. The wave period is bigger and more difficult to wave absorption, and the reflectivity is proportional to wave period.
|
634 |
Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processesReza, S.M. Mohsin 15 May 2009 (has links)
Design options have been evaluated for the Modular Helium Reactor (MHR) for
higher temperature operation. An alternative configuration for the MHR coolant inlet
flow path is developed to reduce the peak vessel temperature (PVT). The coolant inlet
path is shifted from the annular path between reactor core barrel and vessel wall through
the permanent side reflector (PSR). The number and dimensions of coolant holes are
varied to optimize the pressure drop, the inlet velocity, and the percentage of graphite
removed from the PSR to create this inlet path. With the removal of ~10% of the
graphite from PSR the PVT is reduced from 541 0C to 421 0C.
A new design for the graphite block core has been evaluated and optimized to
reduce the inlet coolant temperature with the aim of further reduction of PVT. The
dimensions and number of fuel rods and coolant holes, and the triangular pitch have
been changed and optimized. Different packing fractions for the new core design have
been used to conserve the number of fuel particles. Thermal properties for the fuel
elements are calculated and incorporated into these analyses. The inlet temperature, mass
flow and bypass flow are optimized to limit the peak fuel temperature (PFT) within an
acceptable range.
Using both of these modifications together, the PVT is reduced to ~350 0C while
keeping the outlet temperature at 950 0C and maintaining the PFT within acceptable
limits. The vessel and fuel temperatures during low pressure conduction cooldown and high pressure conduction cooldown transients are found to be well below the design
limits.
The reliability and availability studies for coupled nuclear hydrogen production
processes based on the sulfur iodine thermochemical process and high temperature
electrolysis process have been accomplished. The fault tree models for both these
processes are developed. Using information obtained on system configuration,
component failure probability, component repair time and system operating modes and
conditions, the system reliability and availability are assessed. Required redundancies
are made to improve system reliability and to optimize the plant design for economic
performance. The failure rates and outage factors of both processes are found to be well
below the maximum acceptable range.
|
635 |
Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity TestCorrea Castro, Juan 2011 May 1900 (has links)
Unconventional gas has become an important resource to help meet our future
energy demands. Although plentiful, it is difficult to produce this resource, when locked
in a massive sedimentary formation. Among all unconventional gas resources, tight gas
sands represent a big fraction and are often characterized by very low porosity and
permeability associated with their producing formations, resulting in extremely low
production rate. The low flow properties and the recovery factors of these sands make
necessary continuous efforts to reduce costs and improve efficiency in all aspects of
drilling, completion and production techniques. Many of the recent improvements have
been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic
fracture is to create a long, highly conductive fracture to facilitate the gas flow from the
reservoir to the wellbore to obtain commercial production rates. Fracture conductivity
depends on several factors, such as like the damage created by the gel during the
treatment and the gel clean-up after the treatment.
This research is focused on predicting more accurately the fracture conductivity,
the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter
fracture conductivity, such as polymer concentration, breaker concentration and gas flow
rate, are also examined in this study. A series of experiments, using a procedure of
“dynamical fracture conductivity test”, were carried out. This procedure simulates the
proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it
occurs in the field, using different combinations of polymer and breaker concentrations
under reservoirs conditions.
The result of this study provides the basis to optimize the fracturing fluids and
the polymer loading at different reservoir conditions, which may result in a clean and
conductive fracture. Success in improving this process will help to decrease capital
expenditures and increase the production in unconventional tight gas reservoirs.
|
636 |
Thickness Measurement of Fracture Fluid Gel Filter Cake after Static Build Up and Shear ErosionXu, Ben 2010 May 1900 (has links)
The hydraulic fracturing treatment is an essential tight sand gas reservoir
stimulation that employs viscous fluid to break the formation rock to create a fracture
and transport the propping agent to support the fracture from naturally healing. Despite
proven economic benefit, the hydraulic fracture fluid damages the producing formation
and the propped fracture. To analyze the gel damage effect quantitatively, the filter cake
thickness is used as a parameter that has not been measured before.
This project was divided into two stages. The first stage built up a filter cake and
measured the filter cake thickness by a laser profilometer. A correlation between leakoff
volume and filter cake thickness was produced. The second stage eroded the filter cake
by flowing original fracturing fluid through the core sample to study the fracturing fluid
shear clean up effect on filter cake thickness.
The filter cake was built up in the lab and the thickness was measured with
different methods. The profilometer has been tested as an effective tool to measure the
filter cake thickness. A correlation for crosslinked guar fracture fluid filter cake thickness was produced. An experiment setup used to shear erode the filter cake was
built and tested. The results showed the filter cake was not eroded at 200 s-1 shear rate.
|
637 |
Hydraulic Fracture Optimization with a Pseudo-3D Model in Multi-layered LithologyYang, Mei 2011 August 1900 (has links)
Hydraulic Fracturing is a technique to accelerate production and enhance ultimate recovery of oil and gas while fracture geometry is an important aspect in hydraulic fracturing design and optimization. Systematic design procedures are available based on the so-called two-dimensional models (2D) focus on the optimization of fracture length and width, assuming one can estimate a value for fracture height, while so-called pseudo three dimensional (p-3D) models suitable for multi-layered reservoirs aim to maximize well production by optimizing fracture geometry, including fracture height, half-length and width at the end of the stimulation treatment.
The proposed p-3D approach to design integrates four parts: 1) containment layers discretization to allow for a range of plausible fracture heights, 2) the Unified Fracture Design (UFD) model to calculate the fracture half-length and width, 3) the PKN or KGD models to predict hydraulic fracture geometry and the associated net pressure and other treatment parameters, and, finally, 4) Linear Elastic Fracture Mechanics (LEFM) to calculate fracture height. The aim is to find convergence of fracture height and net pressure.
Net pressure distribution plays an important role when the fracture is propagating in the reservoir. In multi-layered reservoirs, the net pressure of each layer varies as a result of different rock properties. This study considers the contributions of all layers to the stress intensity factor at the fracture tips to find the final equilibrium height defined by the condition where the fracture toughness equals the calculated stress intensity factor based on LEFM.
Other than maximizing production, another obvious application of this research is to prevent the fracture from propagating into unintended layers (i.e. gas cap and/or aquifer).
Therefore, this study can aid fracture design by pointing out: (1) Treating pressure needed to optimize fracture geometry, (2) The containment top and bottom layers of a multi-layered reservoir, (3) The upwards and downwards growth of the fracture tip from the crack center.
|
638 |
Degradation of Guar-Based Fracturing Gels: A Study of Oxidative and Enzymatic BreakersSarwar, Muhammad Usman 2010 December 1900 (has links)
Unbroken gel and residue from guar-based fracturing gels can be a cause for formation damage. The effectiveness of a fracturing treatment depends on better achieveing desired fracture geometry, proper proppant placement and after that, a good clean-up. The clean-up is achieved by reducing the fluid viscosity using chemical additives called "Breakers". There are many different types of breakers used in the industry, but they can be broadly divided into two categories: oxidizers and enzymes. Breaker perfromance depends on bottomhole temperature, breaker concentration and polymer loading. Different kind of breakers, used at different concentrations and temperatures, give different kind of "break" results. Therefore, the amount of unbroken gel and residue generated is also different.
This project was aimed at studying basic guar-breaker interactions using some of the most common breakers used in the industry. The breakers studied cover a working temperature range of 75 degrees F to 300 degrees F. The effectiveness of each breaker was studied and also the amount of damage that it causes. Viscosity profiles were developed for various field concentrations of breakers. The concentrations were tested over temperature ranges corresponding to the temperatures at which each breaker is used in the field. The majority of these viscosity tests were 6 hours long, with a few exceptions. Early time viscosity data, for the intial 10 minutes of the test, was also plotted from these tests for fracturing applications where the breaker is required to degrade the fluid by the time it reached downhole. This was needed to prevent the damage to the pumping equipment at the surface yet still have almost water-like fluid entering into the formation.
The study provides a better understanding of different breaker systems, which can be used in the industry, while designing fracturing fluid systems in order to optimize the breaker performance and achieve a better, cleaner break to minimize the formation damage caused by polymer degradation.
|
639 |
Hydrologic Impacts of Saltcedar Control Along a Regulated Dryland RiverMcDonald, Alyson Kay 2010 December 1900 (has links)
Tens of millions of dollars have been spent to control Tamarix (saltcedar)
trees along waterways in the Southwestern United States for the purpose of
increasing streamflow yet no increase in streamflow has been demonstrated.
The Pecos River Ecosystem Project (PREP) served as a case study to
characterize surface and groundwater interaction along the Pecos River in
Texas, assess the influence of saltcedar transpiration on stream stage and water
table fluctuations, and evaluate the impacts of large-scale saltcedar control on
baseflows. This is the first study that has investigated the influence of saltcedar
transpiration on surface and groundwater interaction and the first to provide a
mechanistic explanation for the lack of measurable increase in streamflow.
Neither saltcedar transpiration nor saltcedar removal influenced hydraulic
gradients, streambank seepage, or stream elevations. The results of the plot
scale studies indicate saltcedar transpiration along the Pecos River is lower than
reported elsewhere and therefore may not yield detectable increases in baseflow. To extend the study to a much larger scale, we analyzed annual
baseflows at the downstream end of 340 km river reach from 1999
(pretreatment) through 2009. Surprisingly, baseflows declined for four years
after the project began despite additional acreages of saltcedar treatment each
year. However, baseflow surged in 2005 and remained higher than the
pretreatment year (1999) through 2009. Additional detailed analyses of
reservoir release and delivery records and rainfall are needed to better
understand contributions of rainfall and flow regulation to this increase. Tracer
based studies to determine the relative contributions of releases and
groundwater would also enable a better interpretation of the change in
baseflows. We did not investigate any other reported benefits, such as
restoration of native plant species, or reduced soil salinity, of saltcedar control.
|
640 |
A PKN Hydraulic Fracture Model Study and Formation Permeability DeterminationXiang, Jing 2011 December 1900 (has links)
Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters.
There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations.
In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered.
By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased.
In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.
|
Page generated in 0.0539 seconds