• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 25
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 461
  • 461
  • 201
  • 163
  • 86
  • 55
  • 52
  • 47
  • 43
  • 42
  • 35
  • 33
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Determination Of Computational Domain Boundaries For Viscous Flow Around Two Dimensional Bodies

Basa, Mustafa Mazhar 01 November 2006 (has links) (PDF)
Borders of flow field around immersed bodies can be extended to long distances since there are no physical boundaries. In computational practice however, the flow domain must be restricted to a reasonable size by imposing appropriate boundary conditions at the edges of the computational space. In this thesis work, streamlines obtained from potential flow solution in a relatively large spatial domain are utilized to specify the boundaries and boundary conditions for a more restricted computational domain to be used for detailed viscous flow computations. A grid generation code is adopted for generation of unstructured triangular grid systems for domains involving multiple immersed bodies of any shape at arbitrary orientations such as a group of tall buildings in horizontal plane. Finite volume method is used in the solution of Laplace equation for the stream function. A deformation modulus is introduced as a probe parameter to aid locating the viscous flow boundaries. The computer code acts as a preprocessor for viscous flow computations, specifying the computational boundaries, the boundary conditions and generating the computational grid.
282

Forced Hydraulic Jump On Artificially Roughened Beds

Simsek, Cagdas 01 January 2007 (has links) (PDF)
In the scope of the study, prismatic roughness elements with different longitudinal spacing and arrangements have been tested in a rectangular flume in order to reveal their effects on fundamental characteristics of a hydraulic jump. Two basic roughness types with altering arrangements have been tested. Roughness elements of the first type extends through the channel width against the flow with varying length and pitch ratios for different arrangements. The second type is of staggered essence and produced by piecing the roughness elements defined in the initial type into three parts which are equal in length. The doublet formed from the pieces on the sides is shifted to the consequent row to make two successive roughness rows encapsulate the channel span completely. Staggered roughness type is formed with the repetition of this arrangement along the flume. Independent of their type and arrangement, the entirety of roughness elements are embedded in the channel bed in order to avoid their protuberance into the flow, based on the presumption that the crests of the roughness elements levelled with the channel inlet would be less exposed to caving effects of flow than the protruding elements. In the study, influence of the proposed roughness elements on the fundamental engineering concerns as the length, height (tail water depth) and energy dissipation capacity of hydraulic jumps has been questioned in the light of empirical work and related literature on forced and smooth hydraulic jumps. At the final stage of the study, it was concluded that both strip and staggered roughness have positive effects on the characteristics of hydraulic jump given above. 3-7% more energy dissipation was observed in jumps on rough beds compared to classical hydraulic jumps. For tailwater dept reduction, whereas strip roughness provided 5-13%, staggered roughness led to 7-15% tailwater depth reduction compared to classical hydraulic jump. While strip roughness reduced jump length around 40%, 35-55% reduction was observed with staggered roughness when compared to classical hydraulic jump.
283

Non-darcian Flow Through Rockfills

Kureksiz, Ozge 01 August 2008 (has links) (PDF)
An impermeable weir constructed across a stream prevents the longitudinal movement of aquatic life and transportation of physical and chemical substances in water, eventually having a negative impact on river environment. However, a rubble mound weir is considered environmentally friendly, since its permeability allows the streamwise migration of aquatic life. This thesis investigates the performance of this type of weir as a water use facility. The particular objective of the investigation is to study the flow mechanism in terms of water surface profile and discharge through the weir. In the study, flow through the rubble mound weir is considered non-Darcian, steady, and one-dimensional. In the analysis, gradually varied open channel flow algorithm is applied to porous medium flow through the rubble mound weir in which laminar and turbulent components of flow are taken into consideration. Unlike previous studies where Stephenson and Wilkins relations were used, in this thesis Forchheimer equation is used. To verify the validity of numerical solution of governing equation based on Forchheimer relation, an experimental investigation is conducted in the laboratory. The experimentally obtained water surface profiles are compared with the numerical results. It is observed that there is a satisfactory agreement between numerical and experimental results. The water surface profiles obtained by numerical solution are further compared with those based on Stephenson and Wilkins relations. It is concluded that the proposed numerical solution technique for the Forchheimer based governing equation may be used in the analysis of flow through, and design of rockfill weirs.
284

Experimental Study Of Single And Multiple Outlets Behavior Under Constant Head

Cobanoglu, Ismail 01 November 2008 (has links) (PDF)
The performance of outlets under constant head is investigated in this study. Behavior of single outlet is analyzed / subsequently effect of multiple outlets on a single outlet is examined. Parameters taken into account are constant head of water, orifice shape, orifice length, number of open outlets and discharge. The outlet type, which is examined, can be classified as a short tube orifice. Two different orifice diameters and tube lengths are used. Outlets had the diameter, 6.00 and 10.35mm. The ratio of orifice length to diameter (l/d) was 5 and 8. Number of outlets is 5, which are opened in several combinations. A dimensional analysis shows that discharge coefficient, Cd is a function of diameter-length ratio and the Reynolds Number. In this study, high Reynolds Number (2300&lt / Re&lt / 18600) range is examined and the results are compared with the available data in the literature. Furthermore, performance of the group outlets is investigated.
285

Cost Anaysis Of Sediment Removal Techniques From Reservoir

Aras, Tuce 01 May 2009 (has links) (PDF)
Siltation in reservoirs is becoming an important problem as the dams are getting older in the world. The general dam practice has been implemented in a sequence that / planning, design, construction, operation of dam until the accumulated sediment prevents its purpose function or functions. Unfortunately, effects of sedimentation and fate of the left over dams in the future are not figured. Indeed, these negative effects could be avoided, life of the reservoir can be prolonged and even the reservoir will last forever by minimizing the sedimentation. Therefore in this study, the methods that provide extension of reservoir life are discussed hydraulically, economically and applicability point of view. In addition, there is open source package program RESCON which examines and compares some sediment removal techniques economically and also hydraulically. RESCON is used in conjunction with several cases / namely &Ccedil / ubuk Dam-I, Bor&ccedil / ka Dam and Muratli Dam. Moreover, some sensitivity analyses are carried out in order to scrutiny of the program for Turkish economic conditions.
286

Experimental Investigation On Sharp Crested Rectangular Weirs

Sisman, H. Cigdem 01 August 2009 (has links) (PDF)
Sharp crested rectangular weirs used for discharge measurement purposes in open channel hydraulics are investigated experimentally. A series of experiments were conducted by measuring discharge and head over the weir for different weir heights for full width weir. It is seen that after a certain weir height, head and discharge relation does not change. Hence a constant weir height is determined. For that height / discharge and head over the weir are measured for variable weir width, starting from the full width weir to slit weir. Description of the discharge coefficient valid for the full range of weir widths and an empirical expression involving dimensionless flow variables is aimed. Experimental data obtained for this purpose and the results of the regression analysis performed are represented.
287

Measurements Of Velocity Profiles By Using Particle Image Velocimeter

Kemalli, Onur 01 October 2009 (has links) (PDF)
Particle Image Velocimetry (PIV) is an optical technique used to display and evaluate the motion of fine particles in a flow. In this experimental study, velocity profiles are examined by PIV system and basic analysis methods are compared.
288

Initiation Of Motion Of Coarse Solitary Particles On Rough Channel Beds

Kucuktepe, Omer Ilker 01 December 2009 (has links) (PDF)
In this study the incipient motion of coarse solitary particles on channel beds having different roughness heights was experimentally investigated. The experiments were conducted in a tilting flume of a rectangular cross-section having a working length of 12 m and a rough bed composed of at least 2 layers of coarse gravel of almost constant size. The roughness material of the channel bed was changed three times. The slope of the channel bed and the discharge are two main parameters that determine the initiation of motion of a given particle. The artificial particles tested in the experiments were obtained by mixing cement and iron dust at certain ratios. Dimensionless hydraulic parameters determined from theoretical analysis were related to each other. Flow depths, velocity profiles were measured and flow conditions that represent the critical conditions of initiation of motion were expressed in terms of critical velocities and shear velocities. The results were compared with the previous studies&rsquo / results.
289

Investigation Of Waterhammer Problems In The Penstocks Of Small Hydropower Plants

Calamak, Melih 01 September 2010 (has links) (PDF)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of characteristics for solving nonlinear differential equations of transient flow is used in the study. In two case studies, various operation conditions such as load rejection, load acceptance and instant load rejection are studied. The parameters and situations affecting pressure and turbine speed rises are investigated. Computed and available measured values are found to be very close. Also, differences between waterhammer responses of the Francis and Pelton turbines are revealed. Finally, specific protective measures are suggested to either diminish and/or avoid the harmful effects of waterhammer problems in small hydropower plants.
290

Solution Of One Dimensional Transient Flow In Composite Aquifers Using Stehfest Algorithm

Bakar, Urun 01 September 2010 (has links) (PDF)
In this study, piezometric heads in a composite aquifer composed of an alluvial deposit having a width adjacent to a semi-infinite fractured rock are determined. One dimensional transient flow induced by a constant discharge pumping rate from a stream intersecting alluvial part of the aquifer is considered. Parts of the aquifer are homogeneous andisotropic. Equations of flow, initial and boundary conditions are converted to dimensionless forms for graphical presentation and the interpretation of results independent of discharge and head inputs specific to the problem. Equations are solved first in Laplace domain and Laplace domain solutions are inverted numerically to real time domain by utilizing Stehfest algorithm.For this purpose, a set of subroutines in VBA Excel are developed. This procedure is verified by application of code to flow in semi-infinite homogeneous aquifer under constant discharge for which analytical solution is available in literature. VBA codes are also developed for two special cases of finite aquifer with impervious and with recharge boundary on the right hand side. Results of composite aquifer solutions with extreme tranmissivity values are compared with these two cases for verification of methodology and sensivity of results.

Page generated in 0.3269 seconds