• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 14
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patterns and Pathways of Hydrogenation of Asphaltene Model Compounds

Mierau, Judah Unknown Date
No description available.
2

New Catalysts for Hydroprocessing: Molybdenum and Tungsten Phosphide

Clark, Paul Alexander 27 November 2000 (has links)
This dissertation describes the preparation and application of a novel class of hydroprocessing catalysts, transition metal phosphides. Concentration was placed on molybdenum and tungsten monophosphides because of the importance of these elements in standard sulfidic hydrotreating catalysts. Transition metal phosphides exist over a wide range of stoichiometry, and their properties have a great deal of variation, ranging from phosphorus poor compounds with metallic electrical properties to phosphorus rich compounds with semiconducting or insulating properties. The x-ray diffraction patterns of the phosphides studied here were unchanged under the conditions of catalytic hydroprocessing, demonstrating their stability toward the hydroprocessing conditions and allowing study of their intrinsic catalytic properties. Materials were prepared in bulk form, supported on alumina, and supported on silica. The mechanism of hydrodenitrogenation on MoP/SiO2 and WP/SiO2 catalysts was investigated by comparison of hydrodenitrogenation reactions of pyridine, piperidine, n-pentylamine, tert-pentylamine, and neo-pentylamine. / Ph. D.
3

Two-stage aromatics hydrogenation of bitumen-derived light gas oil

Owusu-Boakye, Abena 19 September 2005
In this research, two-stage hydrotreating of bitumen-derived light gas oil (LGO) from Athabasca oil sands was studied. The objective was to catalytically upgrade the LGO by reducing the aromatics content and enhancing the cetane content via inter-stage removal of hydrogen sulfide. The impact of hydrogen sulfide inhibition on aromatics hydrogenation (HDA), hydrodenitrogenation (HDN) and hydrodesulfirization (HDS) activities was investigated. Experiments for this study were carried out in a trickle-bed reactor loaded with commercial NiMo/Al2O3 and lab-prepared NiW/Al2O3 in the stage I and stage II reactors, respectively. Temperature was varied from 350 to 390 oC at the optimum LHSV and pressure conditions of 0.6 h-1 and 11.0 MPa, respectively. The results from two-stage process showed significant improvement in HDA, cetane rating and HDS activities compared to the single-stage process after the inter-stage removal of hydrogen sulfide. Hence, the presence of hydrogen sulfide in the reaction retarded both the HDA and HDS processes in the single-stage operation. Negligible hydrogen sulfide inhibition was however, observed in the HDN process. <p>Prior to the two-stage hydrotreating study, single-stage hydrotreating reactions were carried out over commercial NiMo/Al2O3 catalyst to determine the optimum operating conditions for maximizing hydrogenation of aromatics. A statistical approach via the Analysis of Variance (ANOVA) technique was used to develop regression models for predicting the conversion of aromatics, sulfur and nitrogen in the LGO feed. Experiments were performed at the following operating conditions: temperature (340-390 oC); pressure (6.9-12.4 MPa) and liquid hourly space velocity, LHSV (0.5-2.0 h-1). Hydrogen-to-oil ratio was maintained constant at 550 ml/ml. The results showed that the two-level interaction between temperature and pressure was the only significant interaction parameter affecting HDA while interaction between temperature and LHSV was the most important parameter affecting both HDS and HDN activities. A maximum 63 % HDA was obtained at 379 oC, 11.0 MPa and 0.6 h-1. Experiments with NiW/Al2O3 were also performed in a single-stage reactor with LGO blend feedstock by varying temperature from 340-390 oC at the optimum pressure and space velocity of 11.0 MPa and 0.6 h-1, respectively. The following order of ease of hydrogenation was observed: poly- > di- >> monoaromatics. The order of ease of hydrogenation in other LGO feedstocks (atmospheric light gas oil, ALGO; hydrocrack light gas oil, HLGO; and vacuum light gas oil, VLGO) was studied and found to follow the order: VLGO > ALHO > HLGO. Studies on mild hydrocracking (MHC) in the gas oil feedstocks showed a net increase in gasoline with a corresponding decrease in diesel with increasing temperature. <p>Both the single and two-stage HDA and HDS kinetics were modeled using Langmuir-Hinshelwood rate equations. These models predicted the experimental data with reasonable accuracy. The degree of conversion of the gas oil fractions in ALGO, HLGO and VLGO via mild hydrocracking was best described by a pseudo-first order kinetic model based on a parallel conversion scheme.
4

Two-stage aromatics hydrogenation of bitumen-derived light gas oil

Owusu-Boakye, Abena 19 September 2005 (has links)
In this research, two-stage hydrotreating of bitumen-derived light gas oil (LGO) from Athabasca oil sands was studied. The objective was to catalytically upgrade the LGO by reducing the aromatics content and enhancing the cetane content via inter-stage removal of hydrogen sulfide. The impact of hydrogen sulfide inhibition on aromatics hydrogenation (HDA), hydrodenitrogenation (HDN) and hydrodesulfirization (HDS) activities was investigated. Experiments for this study were carried out in a trickle-bed reactor loaded with commercial NiMo/Al2O3 and lab-prepared NiW/Al2O3 in the stage I and stage II reactors, respectively. Temperature was varied from 350 to 390 oC at the optimum LHSV and pressure conditions of 0.6 h-1 and 11.0 MPa, respectively. The results from two-stage process showed significant improvement in HDA, cetane rating and HDS activities compared to the single-stage process after the inter-stage removal of hydrogen sulfide. Hence, the presence of hydrogen sulfide in the reaction retarded both the HDA and HDS processes in the single-stage operation. Negligible hydrogen sulfide inhibition was however, observed in the HDN process. <p>Prior to the two-stage hydrotreating study, single-stage hydrotreating reactions were carried out over commercial NiMo/Al2O3 catalyst to determine the optimum operating conditions for maximizing hydrogenation of aromatics. A statistical approach via the Analysis of Variance (ANOVA) technique was used to develop regression models for predicting the conversion of aromatics, sulfur and nitrogen in the LGO feed. Experiments were performed at the following operating conditions: temperature (340-390 oC); pressure (6.9-12.4 MPa) and liquid hourly space velocity, LHSV (0.5-2.0 h-1). Hydrogen-to-oil ratio was maintained constant at 550 ml/ml. The results showed that the two-level interaction between temperature and pressure was the only significant interaction parameter affecting HDA while interaction between temperature and LHSV was the most important parameter affecting both HDS and HDN activities. A maximum 63 % HDA was obtained at 379 oC, 11.0 MPa and 0.6 h-1. Experiments with NiW/Al2O3 were also performed in a single-stage reactor with LGO blend feedstock by varying temperature from 340-390 oC at the optimum pressure and space velocity of 11.0 MPa and 0.6 h-1, respectively. The following order of ease of hydrogenation was observed: poly- > di- >> monoaromatics. The order of ease of hydrogenation in other LGO feedstocks (atmospheric light gas oil, ALGO; hydrocrack light gas oil, HLGO; and vacuum light gas oil, VLGO) was studied and found to follow the order: VLGO > ALHO > HLGO. Studies on mild hydrocracking (MHC) in the gas oil feedstocks showed a net increase in gasoline with a corresponding decrease in diesel with increasing temperature. <p>Both the single and two-stage HDA and HDS kinetics were modeled using Langmuir-Hinshelwood rate equations. These models predicted the experimental data with reasonable accuracy. The degree of conversion of the gas oil fractions in ALGO, HLGO and VLGO via mild hydrocracking was best described by a pseudo-first order kinetic model based on a parallel conversion scheme.
5

Preparation and Reactivity of Niobium-Containing Hydrotreating Catalysts

Schwartz, Viviane 11 March 2000 (has links)
A series of niobium-containing nitride and carbides were prepared by a temperature-programmed synthesis method. The catalysts synthesized comprised a monometallic niobium oxynitride and a new bimetallic oxycarbide supported system, Nb-Mo-O-C/Al₂O₃ (Mo/Nb = 1.2; 1.6; 2.0). In the case of the niobium oxynitride, the progress of formation was analyzed by interrupting the synthesis at various stages. The effect of the heating rate on product properties was also investigated. The solid intermediates and the final niobium oxynitride were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis (CHNS), and gas adsorption techniques. The solid state transformation occurred directly from Nb₂O₅ to NbN<sub>x</sub>O<sub>y</sub> without any suboxide intermediates. The bimetallic supported oxycarbide materials were also characterized by X-ray diffraction (XRD), gas adsorption techniques, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS). It was found that the electronic properties of the oxycarbide were modified by the interaction with the Al₂O₃ support, and that most of the oxygen atoms were associated with the niobium rather than the molybdenum atom. All of the niobium-containing catalysts were tested in a three-phase trickle-bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene. The niobium oxynitride presented low HDS activity and moderate HDN activity, whereas the supported bimetallic oxycarbide was found to be highly active for both, HDN and HDS, demonstrating higher activities than the commercial sulfided Ni-Mo/Al₂O₃ when compared on the basis of active sites. In addition to these studies a comprehensive investigation of the HDN reaction mechanism was carried out over bulk unsupported Mo₂C, NbC, NbMo₂-O-C, and compared with the mechanism over a sulfide catalyst, MoS₂/SiO₂. For this purpose, a comparison of the HDN rate of a series of isomeric amines was performed, and the reaction occurred mainly through a β-elimination mechanism for all catalysts. Temperature programmed desorption of ethylamine was used to investigate the acid properties of the catalytic surfaces, and a good agreement between the specific rate of reaction and the number of Brønsted acid-sites was obtained. Infrared spectroscopy showed that the amines interacted with acidic centers to form adsorbed quartenary ammonium species. The deamination reaction over the carbide and sulfide catalysts probably occurs by a concerted push-pull mechanism involving basic sulfur species and Brønsted-acidic centers. In order to obtain more insight into the mechanism a study of the pyridine HDN network was carried out.All of the catalysts showed the same activity trend: the reactivity of n-pentylamine was high, while those of piperidine and pyridine were relatively low. The carbide catalysts showed higher selectivity towards HDN products than the sulfide catalyst at the same conversion levels. The higher selectivity was related to the higher ratio (r = k₂/k₁) between the rate constants of the two consecutive reactions, hydrogenation of pyridine (k₁) and ring opening of piperidine (k₂). The order of activity of the carbides and sulfide differed considerably depending on the substrate. However, for the pyridine reaction network the similarity in product distribution suggested that a similar surface composition, a carbosulfide, was attained during the reaction. / Ph. D.
6

Novel, High Activity Hydroprocessing Catalysts: Iron Group Phosphides

Wang, Xianqin 27 March 2002 (has links)
A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe₂P, CoP and Ni₂P, were also prepared on a silica (SiO₂) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N₂ BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370 °C). The reactivity studies showed that the nickel phosphide (Ni₂P/SiO₂) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/g-Al₂O₃ catalyst at the same conditions, Ni₂P/silica had a substantially higher HDS activity (100 % vs. 76 %) and HDN activity (82 % vs. 38 %). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni₂P/SiO₂, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni₂P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni₂P/SiO₂ sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an a-H activation and nitrogen removal proceeded mainly by means of a b-H activation though an elimination (E2) mechanism. The relative elimination rates depended on the type and number of b-hydrogen atoms. Elimination of b-H atoms attached to tertiary carbon atoms occurred faster than those attached to secondary carbon atoms. Also, the greater the number of the b-H atoms, the higher the elimination rates. The nature of the adsorbed intermediates was probed by Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) of the probe molecule, ethylamine. This measurement allowed the determination of the likely steps in the hydrodenitrogenation reaction. / Ph. D.
7

Kinetics and effects of H2 partial pressure on hydrotreating of heavy gas oil

Mapiour, Majak Loi 09 February 2010
The impact of H2 partial pressure (H2 pp) during the hydrotreating of heavy gas oil, derived from Athabasca bitumen, over commercial NiMo/¥ã-Al2O3 catalyst was studied in a micro-trickle bed reactor. The experimental conditions were varied as follows: temperature: 360 to 400¨¬C, pressure: 7 to 11 MPa, gas/oil ratio: 400 to 1270 mL/mL, H2 purity range of 0 to 100 vol. % (with the rest either CH4 or He), and LHSV range of 0.65 to 2 h-1. The two main objectives of the project were to study the nature of the dependence of H2 pp on temperature, pressure, gas/oil ratio, LHSV (Liquid Hourly Space Velocity), and H2 purity. The project was divided into three phases: in phase one the effect of H2 purity on hydrotreating of heavy gas oil (HGO) was studied, in phase two the nature of H2 pp dependency and the effect of H2 pp on hydrotreating of HGO was investigated, and in phase three kinetic studies were carried out using different kinetic models.<p> The objective of phase one was to study the effect of hydrogen purity on hydrotreating of HGO was studied in a trickle bed reactor over a commercial Ni−Mo/¥ã-alumina catalyst. Methane was used as a diluent for the hydrogen stream, and its effect on the catalyst performance was compared to that of helium, which is inert toward the catalyst. Furthermore, a deactivation study was conducted over a period of 66 days, during which the catalyst was subjected to H2 purities ranging from 75 to 95% (with the rest methane); no significant deterioration in the hydroprocessing activities of the catalyst was observed. Therefore, it was concluded that methane was inert toward a commercial Ni−Mo/¥ã-alumina catalyst. However, its presence resulted in hydrogen partial pressure reduction, which in turn led to a decrease in hydrodesulphurization (HDS), hydrodenitrogenation (HDN), hydrodearomatization (HDA) conversions. This reduction can be offset by increasing the total pressure of the system. HDS, HDN, HDA, and mild hydrocracking (MHC) conversions were studied. Also determined were cetane index, density, aniline point, diesel index, and fractional distribution of the products.<p> The main objective of phase two was to study the effects of H2 pp on hydrotreating conversions, feed vaporization, H2 dissolution, and H2 consumption were studied. The results show that HDN and HDA are significantly more affected by H2 partial pressure than HDS; with the HDN being the most affected. For instance as the inlet H2 partial pressure was increased from 4.6 to 8.9 MPa HDS, HDN, and HDA conversions increased for 94.9%, 55.1%, and 46.0% to 96.7%, 83.9%, and 58.0% , respectively. Moreover, it was observed that H2 dissolution and H2 consumption increased with increasing H2 pp. No clear trend was observed for the effect of H2 pp on feed vaporization.<p> In phase three the kinetics of HDS, HDN, and HDA were studied. The power law, multi-parameter, and Langmuir - Hinshelwood type models were used to fit the data. The prediction capacities of the resulting models were tested. It was determined that, while multi-parameter model yielded better prediction, L-H had an advantage in that it took a lesser number of experimental data to determine its parameters. Kinetic fitting of the data to a pseudo-first-order power law model suggested that conclusions on the effect of H2 pp on hydrotreating activities could be equally drawn from either inlet or outlet hydrogen partial pressure. However, from the catalyst deactivation standpoint, it is recommended that such conclusions are drawn from the outlet H2 partial pressure, since it is the reactor point with the lowest hydrogen partial pressure.
8

Kinetics and effects of H2 partial pressure on hydrotreating of heavy gas oil

Mapiour, Majak Loi 09 February 2010 (has links)
The impact of H2 partial pressure (H2 pp) during the hydrotreating of heavy gas oil, derived from Athabasca bitumen, over commercial NiMo/¥ã-Al2O3 catalyst was studied in a micro-trickle bed reactor. The experimental conditions were varied as follows: temperature: 360 to 400¨¬C, pressure: 7 to 11 MPa, gas/oil ratio: 400 to 1270 mL/mL, H2 purity range of 0 to 100 vol. % (with the rest either CH4 or He), and LHSV range of 0.65 to 2 h-1. The two main objectives of the project were to study the nature of the dependence of H2 pp on temperature, pressure, gas/oil ratio, LHSV (Liquid Hourly Space Velocity), and H2 purity. The project was divided into three phases: in phase one the effect of H2 purity on hydrotreating of heavy gas oil (HGO) was studied, in phase two the nature of H2 pp dependency and the effect of H2 pp on hydrotreating of HGO was investigated, and in phase three kinetic studies were carried out using different kinetic models.<p> The objective of phase one was to study the effect of hydrogen purity on hydrotreating of HGO was studied in a trickle bed reactor over a commercial Ni−Mo/¥ã-alumina catalyst. Methane was used as a diluent for the hydrogen stream, and its effect on the catalyst performance was compared to that of helium, which is inert toward the catalyst. Furthermore, a deactivation study was conducted over a period of 66 days, during which the catalyst was subjected to H2 purities ranging from 75 to 95% (with the rest methane); no significant deterioration in the hydroprocessing activities of the catalyst was observed. Therefore, it was concluded that methane was inert toward a commercial Ni−Mo/¥ã-alumina catalyst. However, its presence resulted in hydrogen partial pressure reduction, which in turn led to a decrease in hydrodesulphurization (HDS), hydrodenitrogenation (HDN), hydrodearomatization (HDA) conversions. This reduction can be offset by increasing the total pressure of the system. HDS, HDN, HDA, and mild hydrocracking (MHC) conversions were studied. Also determined were cetane index, density, aniline point, diesel index, and fractional distribution of the products.<p> The main objective of phase two was to study the effects of H2 pp on hydrotreating conversions, feed vaporization, H2 dissolution, and H2 consumption were studied. The results show that HDN and HDA are significantly more affected by H2 partial pressure than HDS; with the HDN being the most affected. For instance as the inlet H2 partial pressure was increased from 4.6 to 8.9 MPa HDS, HDN, and HDA conversions increased for 94.9%, 55.1%, and 46.0% to 96.7%, 83.9%, and 58.0% , respectively. Moreover, it was observed that H2 dissolution and H2 consumption increased with increasing H2 pp. No clear trend was observed for the effect of H2 pp on feed vaporization.<p> In phase three the kinetics of HDS, HDN, and HDA were studied. The power law, multi-parameter, and Langmuir - Hinshelwood type models were used to fit the data. The prediction capacities of the resulting models were tested. It was determined that, while multi-parameter model yielded better prediction, L-H had an advantage in that it took a lesser number of experimental data to determine its parameters. Kinetic fitting of the data to a pseudo-first-order power law model suggested that conclusions on the effect of H2 pp on hydrotreating activities could be equally drawn from either inlet or outlet hydrogen partial pressure. However, from the catalyst deactivation standpoint, it is recommended that such conclusions are drawn from the outlet H2 partial pressure, since it is the reactor point with the lowest hydrogen partial pressure.
9

Hydrodesulfurization and Hydrodenitrogenation of Model Compounds Using in-situ Hydrogen over Nano-Dispersed Mo Sulfide Based Catalysts

Liu, Kun 06 November 2014 (has links)
Heavy oil derived from oil sands is becoming an important resource of energy and transportation fuels due to the depletion of conventional oil resources. However, bitumen and heavy oils have a low hydrogen/carbon ratio and contain a large percentage of sulfur and nitrogen heterocyclic compounds. At the level of deep desulfurization, aromatic poly-nuclear molecules, especially nitrogen-containing heterocyclic compounds, exhibit strong inhibitive effect on hydrodesulfurization (HDS) due to competitive adsorption on catalytically active sites with sulfur-containing molecules. Therefore, it is necessary to study the HDS of refractory sulfur-containing compounds and also the effect of nitrogen-containing species on the deep HDS for achieving the ultra low sulfur specifications for transportation fuels. Additionally, the cost of H2 increased in recent years and a bitumen emulsion upgrading technique using an alternative in-situ H2 generated via the water gas shift (WGS) reaction during the hydro-treating was developed in our group. In the present study, a kind of nano-dispersed unsupported MoSx based catalyst was developed and used for hydrodesulfurization, hydrodenitrogenation (HDN) and upgrading bitumen emulsions. Objectives of this thesis were to (1) improve the catalytic activity of the nano-dispersed Mo based catalysts towards the HDS and HDN reactions of refractory sulfur-/nitrogen-containing compounds; and (2) compare the reactivity of in-situ hydrogen generated via the WGS reaction versus externally provided molecular hydrogen in HDS and HDN reactions to improve the efficiency of the bitumen emulsion upgrading technology developed by our group. In the present study, to stimulate the reaction system of bitumen emulsion, water was added into the organic reaction system, so there are different phases in this reaction system. To investigate the activity of the catalyst, the catalyst particles dispersed in different phases were characterized separatedly via HRTEM-EDX. After HRTEM-EDX study, all phases were mixed up and dried for further characterizations, BET, SEM, and XRD. The catalyst prepared in in-situ hydrogen was found to have higher surface area and smaller particle size than the one made in molecular hydrogen. The presence of sulfur-/nitrogen-containing compounds in the preparation system caused significant changes in the morphology of dispersed Mo sulfide catalyst according to HRTEM observations. Refractory sulfur-containing compounds of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) were used as model compounds in HDS studies. The simultaneous HDS of both model compounds was performed at different reaction temperatures from 330??C to 400??C. The effect of the reaction temperature on the WGS reaction in the presence of sulfur-containing model compounds was reported. A kinetic model for HDS reactions was proposed and used in discussing experiment results. The relative HDS reactivity of 4,6-DMDBT to DBT using dispersed Mo sulfide catalyst in in-situ hydrogen was found to be higher than the reported results which were obtained over supported catalysts. Nickel and potassium were introduced into Mo sulfide catalysts as promoters and their effect on the WGS reaction and the HDS reaction were discussed. The simultaneous HDS was carried out in the two different hydrogen sources. The in-situ hydrogen reaction system showed higher conversion and desulfurization results of both sulfur model compounds. This observation has been found to be mainly contributed by the higher activity of the Mo sulfide catalyst prepared in in-situ H2. Strong inhibitive effect of nitrogen-containing compounds, basic quinoline or non-basic carbazole, on the HDS of refractory sulfur model compounds was observed and discussed. Basic quinoline was a much stronger inhibitor than non-basic carbazole. The two HDS reaction pathways were affected by nitrogen-containing compounds to different extents. The HDN of quinoline over the dispersed Mo sulfide catalyst using in-situ hydrogen had been studied extensively by a previous member in our group. In this thesis, the HDN of carbazole was studied. From the identification of HDN products of carbazole, a HDN reaction network was proposed. The HDN of carbazole was processed at different reaction temperatures. The WGS reaction was not inhibited in the presence of carbazole. Comparable reactivity of the two hydrogen sources towards the HDN of carbazole was observed. The presence of 4,6-DMDBT caused significant effect on the HDN of carbazole due to the competitive adsorption on the catalyst surface.
10

Estudo da cinética das reações de hidrodesnitrogenação.

FERNANDES, Thalita Cristine Ribeiro Lucas. 16 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-16T12:44:41Z No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) / Made available in DSpace on 2018-10-16T12:44:41Z (GMT). No. of bitstreams: 1 THALITA CRISTINE RIBEIRO LUCAS FERNANDES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 3155230 bytes, checksum: 29997db242a362fb2a65ffda6fcf8ba0 (MD5) Previous issue date: 2017-09-27 / CNPq / A hidrodesnitrogenação catalítica é um processo utilizado para remover impurezas de nitrogênio em produtos derivados de petróleo e ocorre mediante o tratamento da carga com hidrogênio a temperatura e pressão elevadas em um reator do tipo tricled-bed. Para otimizar as operações nestes reatores, é necessário que se tenha informações sobre a cinética das várias reações de hidrodesnitrogenação. Entretanto, as equações das taxas das reações não estão disponíveis na literatura. Assim, o objetivo deste trabalho consiste em obter as equações das taxas das reações e os parâmetros cinéticos para a rede reacional dos compostos nitrogenados utilizando o modelo rigoroso de hidrodesnitrogenação do Aspen Hysys como base numérica para as simulações. Experimentos numéricos foram realizados em um reator diferencial no software Aspen Hysys para obter dados de concentração de reagentes e produtos a diferentes alimentações. Diferentes métodos foram utilizados, um método de regressão linear multivariável para obtenção dos coeficientes de regressão, um método de metamodelagem interpoladora estocástica, o Kriging e a otimização do metamodelo Kriging utilizando o método dos mínimos quadrados. Para testar as metodologias propostas, todas as etapas foram aplicadas para um sistema de duas reações simples, uma reversível e outra irreversível, em um reator PFR. Os resultados referentes ao método de regressão linear mostraram que a metodologia pode ser utilizada para estimar parâmetros cinéticos desde que se conheça a equação da taxa correspondente. A comparação entre os dois métodos do tipo Kriging propostos (convencional e otimizado) foi feita a partir de técnicas de análise estatísticas, como o coeficiente de determinação R² e análise de variância (ANOVA). O kriging otimizado mostrou uma melhor aderência aos dados quando comparado com o kriging convencional. / Catalytic hydrodenitrogenation is one process used to remove nitrogen impurities from refinery streams, and it occurs by reacting a given charge with hydrogen at high temperature and pressure in a trickled-bed reactor. In order to optimize the operation of such reactors one needs information about the kinetics of the various hydrodenitrogenation reactions. However, reaction rate expressions are not available in the open literature. Therefore, this work aims at obtaining the reaction rate expressions and parameters for the reaction network of nitrogen compounds using the rigorous hydrodenitrogenation model in Aspen Hysys as the numerical basis for simulations. A differential reactor to simulate the process for different feed streams generated data to estimate of concentration of reagent and products at different feed loads. Three different methods were used, a multivariable linear regression model to obtain the regression coefficients, a stochastic interpolator metamodeling, Kriging and an optimized Kriging with least square method. In a first step, two simple reactions rates were used to test the methodologies in a reactor PFR in Hysys, a reversible and an irreversible. The results showed that linear regression might be use to estimate parameters satisfactory only if you know the reaction rate expression. By using statistical analysis as determination coefficient R² and analyze of variance, ANOVA, it was possible to compare both Krigings (conventional and optimized). Optimized Kriging showed a better adherence to the data when compared to conventional kriging.

Page generated in 0.0995 seconds