• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and Reactivity of Niobium-Containing Hydrotreating Catalysts

Schwartz, Viviane 11 March 2000 (has links)
A series of niobium-containing nitride and carbides were prepared by a temperature-programmed synthesis method. The catalysts synthesized comprised a monometallic niobium oxynitride and a new bimetallic oxycarbide supported system, Nb-Mo-O-C/Al₂O₃ (Mo/Nb = 1.2; 1.6; 2.0). In the case of the niobium oxynitride, the progress of formation was analyzed by interrupting the synthesis at various stages. The effect of the heating rate on product properties was also investigated. The solid intermediates and the final niobium oxynitride were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis (CHNS), and gas adsorption techniques. The solid state transformation occurred directly from Nb₂O₅ to NbN<sub>x</sub>O<sub>y</sub> without any suboxide intermediates. The bimetallic supported oxycarbide materials were also characterized by X-ray diffraction (XRD), gas adsorption techniques, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS). It was found that the electronic properties of the oxycarbide were modified by the interaction with the Al₂O₃ support, and that most of the oxygen atoms were associated with the niobium rather than the molybdenum atom. All of the niobium-containing catalysts were tested in a three-phase trickle-bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene. The niobium oxynitride presented low HDS activity and moderate HDN activity, whereas the supported bimetallic oxycarbide was found to be highly active for both, HDN and HDS, demonstrating higher activities than the commercial sulfided Ni-Mo/Al₂O₃ when compared on the basis of active sites. In addition to these studies a comprehensive investigation of the HDN reaction mechanism was carried out over bulk unsupported Mo₂C, NbC, NbMo₂-O-C, and compared with the mechanism over a sulfide catalyst, MoS₂/SiO₂. For this purpose, a comparison of the HDN rate of a series of isomeric amines was performed, and the reaction occurred mainly through a β-elimination mechanism for all catalysts. Temperature programmed desorption of ethylamine was used to investigate the acid properties of the catalytic surfaces, and a good agreement between the specific rate of reaction and the number of Brønsted acid-sites was obtained. Infrared spectroscopy showed that the amines interacted with acidic centers to form adsorbed quartenary ammonium species. The deamination reaction over the carbide and sulfide catalysts probably occurs by a concerted push-pull mechanism involving basic sulfur species and Brønsted-acidic centers. In order to obtain more insight into the mechanism a study of the pyridine HDN network was carried out.All of the catalysts showed the same activity trend: the reactivity of n-pentylamine was high, while those of piperidine and pyridine were relatively low. The carbide catalysts showed higher selectivity towards HDN products than the sulfide catalyst at the same conversion levels. The higher selectivity was related to the higher ratio (r = k₂/k₁) between the rate constants of the two consecutive reactions, hydrogenation of pyridine (k₁) and ring opening of piperidine (k₂). The order of activity of the carbides and sulfide differed considerably depending on the substrate. However, for the pyridine reaction network the similarity in product distribution suggested that a similar surface composition, a carbosulfide, was attained during the reaction. / Ph. D.
2

Novel, High Activity Hydroprocessing Catalysts: Iron Group Phosphides

Wang, Xianqin 27 March 2002 (has links)
A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe₂P, CoP and Ni₂P, were also prepared on a silica (SiO₂) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N₂ BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370 °C). The reactivity studies showed that the nickel phosphide (Ni₂P/SiO₂) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/g-Al₂O₃ catalyst at the same conditions, Ni₂P/silica had a substantially higher HDS activity (100 % vs. 76 %) and HDN activity (82 % vs. 38 %). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni₂P/SiO₂, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni₂P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni₂P/SiO₂ sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an a-H activation and nitrogen removal proceeded mainly by means of a b-H activation though an elimination (E2) mechanism. The relative elimination rates depended on the type and number of b-hydrogen atoms. Elimination of b-H atoms attached to tertiary carbon atoms occurred faster than those attached to secondary carbon atoms. Also, the greater the number of the b-H atoms, the higher the elimination rates. The nature of the adsorbed intermediates was probed by Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) of the probe molecule, ethylamine. This measurement allowed the determination of the likely steps in the hydrodenitrogenation reaction. / Ph. D.

Page generated in 0.1442 seconds